Abstract:
A battery control device controlling an operation of a battery connected to a power system includes detection means that detects battery-related information that shows a state of the battery, or a voltage of an interconnection point of the power system and the battery, first communication means that transmits a detection result of the detection means to an external device, and receives operation control information to control the operation of the battery from the external device, and control means that controls the operation of the battery, based on a state of the power system and the operation control information received by the first communication means.
Abstract:
An energy management system and an energy management method enable an improvement of the balance between power supply and demand. A storage battery (52) is connected to a power line (42) that transmits outside power. A storage battery controller (54) receives a control signal indicating a reduced use period during which the consumption of the outside power by a consumer apparatus (43) connected to the power line (42) is to be reduced, acquires an index value that has a correlation with the demand for outside power, and on the basis of the control signal and the index value, adjusts the amount of charging/discharging of the storage battery (52).
Abstract:
The purpose of the present invention is to provide a thermoelectric conversion element capable of achieving high-efficiency thermoelectric conversion using comparatively inexpensive materials. The present invention is accordingly provided with: a magnetic body layer, an electromotive film for generating electromotive force, and two terminal parts formed so that each is in contact with the electromotive film at two locations having different potentials due to the electromotive force. The electromotive film is formed on the magnetic body layer, said film comprising a Ni-containing magnetic alloy. Said film is doped with a 5d transition metal element, and Ni is the matrix.
Abstract:
A time range setting unit (110) sets an operation startable time point at which an operation can be started and a target operation end time point which is the latest time point among time points at which the operation is to be ended, with respect to each of plural power demanding objects (20). A necessary operation time setting unit (120) sets a necessary operation time with respect to each of the plural power demanding objects (20). A shape information acquisition unit (130) acquires shape information from a schedule management device (40). The shape information indicates an assumed shape of a transition line that represents transition in the amount of supplied power in a target period. A demand transition setting unit (140) sets power demand transition information indicating transition in an electric energy demand in the target period so that the necessary operation time is obtained and so that the transition in the electric energy demand generated by the plural power demanding objects (20) being operated accords with the assumed shape.
Abstract:
A supply and demand adjustment system, that utilizes characteristics of a supply-and-demand adjustment apparatuses and precisely matches the total supply-and-demand adjustment amount with a required adjustment amount, when adjusting supply and demand, is provided. The supply and demand adjustment system that includes a central control apparatus and one or more supply-and-demand adjustment apparatuses, the central control apparatus including, supply-and-demand-adjustment-apparatus-state-collection unit that collects information with regard to a state of each supply-and-demand adjustment apparatus, allocation band calculation unit that calculates a frequency band and an intensity of a fluctuation of supply and demand adjustment to be allocated to the supply-and-demand adjustment apparatus based on the information of the state, and a supply-and-demand-adjustment-amount-calculation-unit that calculates a supply-and-demand adjustment amount for each supply-and-demand adjustment apparatus based on the frequency band and the intensity of the fluctuation of supply and demand adjustment to be allocated to the supply-and-demand adjustment apparatus.
Abstract:
This invention prevents measurement error from becoming large in thermoelectric conversion coefficient evaluation and enhances evaluation efficiency. This invention is a physical property evaluation device for evaluating the physical properties of a plurality of solid materials formed on a substrate. The physical property evaluation device comprises an electromotive force measurement means that forms closed circuits including the individual solid materials and measures the electromotive forces occurring at the two ends of each of the solid materials, a means for producing heat flow within the individual solid materials, an external magnetic field generation means for generating a uniform magnetic field having a given intensity and direction in the vicinity of the individual solid materials, and an automation means for evaluating the physical properties of the individual solid materials using the electromotive force measurement means, heat flow production means, and external magnetic field generation means.
Abstract:
Provided is a monitoring apparatus including an acquisition unit that acquires first time-series data which is time-series data of a measured value and/or a feature amount regarding an electrical device group, and a registration and updating unit that, when a difference in values between a pre-state-change data value which is any one of a data value at a first point in time in the first time-series data and a statistic of a plurality of data values from a point in time earlier than the first point in time by a predetermined period of time to the first point in time and a post-state-change data value which is any one of a data value at a second point in time later than the first point in time and a statistic of a plurality of data values from the second point in time to a point in time later than the second point in time by a predetermined period of time satisfies a predetermined condition, stores a feature amount extracted from any waveform data of a total current consumption, a total power consumption, and a total input voltage of the electrical device group corresponding to the pre-state-change data value and the post-state-change data value which satisfy the predetermined condition, in a feature amount storage unit.
Abstract:
A power flow control system is provided that is capable of improving the reliability of controlling power flow fluctuation and creating wide applicability for systems that control power flow fluctuation. A power-varying device (101) varies the distribution line power amount, which is a value of the power flow that flows in a distribution line (112) to which is connected a plurality of power sources (111) that each generate power. A measurement device (102) measures an index value relating to the total generated power amount, which is the sum total of the amount of power generated by each of the power sources. A calculation device (103) estimates the total generated power amount from the index value, and according to the estimation result, regulates the amount of change in the distribution line power amount that is changed by the power-varying device.
Abstract:
A portable power supply according to the present invention is provided with a combustion device (20) and a heating container (30) that retains an object to be heated, wherein at least a part of a portion of the heating container, the portion being directly heated by the combustion device, is provided with a magnetic metal plate (32) that has spontaneous magnetization and that generates electromotive force due to an anomalous Nernst effect induced by the heating, and wherein electrodes (33a, 33b) for drawing power are provided. Thus, the heating container for generating electricity has a simple configuration, and furthermore the portable power supply is provided with both the heating container and the combustion device.
Abstract:
Provided are an exterior body and an abnormality detector capable of suppressing bulking even when a heat generation detection function is provided. The exterior body of an electronic device generates heat during operation and is characterized by being provided with a magnetic body that is at least a portion of the exterior body, that has spontaneous magnetization, and that generates an electromotive force by exhibiting an abnormal Nernst effect through heat generation of the electronic device, wherein an electrode for extracting power is provided to the magnetic body.