摘要:
In one aspect of the invention, a dye sensitized solar cell has a counter-electrode including carbon-titania nanocomposite thin films made by forming a carbon-based ink; forming a titania (TiO2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO2) nanocomposite thin films.
摘要:
In one aspect of the invention, a dye sensitized solar cell has a counter-electrode including carbon-titania nanocomposite thin films made by forming a carbon-based ink; forming a titania (TiO2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO2) nanocomposite thin films.
摘要:
Methods of reducing microbial attachment to a surface are provided, including methods comprising illuminating a surface comprising a substrate and a coating on the substrate with ultraviolet light, wherein the coating comprises anatase titanium dioxide nanoparticles functionalized with silver nanoparticles and is optically transparent to visible light; and exposing the illuminated surface to microbes. The coating exhibits a reduction in microbial attachment as compared to the coating absent the illumination.
摘要:
In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO2) nanocomposite thin films.
摘要:
In one aspect of the invention, a dye sensitized solar cell has a counter-electrode including carbon-titania nanocomposite thin films made by forming a carbon-based ink; forming a titania (TiO2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO2) nanocomposite thin films.
摘要:
In one aspect of the invention, a dye sensitized solar cell has a counter-electrode including carbon-titania nanocomposite thin films made by forming a carbon-based ink; forming a titania (TiO2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO2) nanocomposite thin films.
摘要:
In one aspect of the invention, a dye sensitized solar cell has a counter-electrode including carbon-titania nanocomposite thin films made by forming a carbon-based ink; forming a titania (TiO2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO2) nanocomposite thin films.
摘要:
In one aspect of the invention, a dye sensitized solar cell has a counter-electrode including carbon-titania nanocomposite thin films made by forming a carbon-based ink; forming a titania (TiO2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO2) nanocomposite thin films.