Abstract:
A method, computer program product, and system perform computations using a sparse convolutional neural network accelerator. A first vector comprising only non-zero weight values and first associated positions of the non-zero weight values within a 3D space is received. A second vector comprising only non-zero input activation values and second associated positions of the non-zero input activation values within a 2D space is received. The non-zero weight values are multiplied with the non-zero input activation values, within a multiplier array, to produce a third vector of products. The first associated positions are combined with the second associated positions to produce a fourth vector of positions, where each position in the fourth vector is associated with a respective product in the third vector. The products in the third vector are transmitted to adders in an accumulator array, based on the position associated with each one of the products.
Abstract:
A method, computer program product, and system for sparse convolutional neural networks that improves efficiency is described. Multi-bit data for input to a processing element is received at a compaction engine. The multi-bit data is determined to equal zero and a single bit signal is transmitted from the memory interface to the processing element in lieu of the multi-bit data, where the single bit signal indicates that the multi-bit data equals zero. A compacted data sequence for input to a processing element is received by a memory interface. The compacted data sequence is transmitted from the memory interface to an expansion engine. Non-zero values are extracted from the compacted data sequence and zeros are inserted between the non-zero values by the expansion engine to generate an expanded data sequence that is output to the processing element.
Abstract:
A method, computer program product, and system perform computations using a processor. A first instruction including a first index vector operand and a second index vector operand is received and the first index vector operand is decoded to produce first coordinate sets for a first array, each first coordinate set including at least a first coordinate and a second coordinate of a position of a non-zero element in the first array. The second index vector operand is decoded to produce second coordinate sets for a second array, each second coordinate set including at least a third coordinate and a fourth coordinate of a position of a non-zero element in the second array. The first coordinate sets are summed with the second coordinate sets to produce output coordinate sets and the output coordinate sets are converted into a set of linear indices.
Abstract:
An integrated circuit device comprises pin resources, a memory controller circuit, a network interface controller circuit, and transmitter circuitry. The pin resources comprise pads coupled to off-chip pins of the integrated circuit device. The memory controller circuit comprises a first interface and the network interface controller circuit comprises a second interface. The transmitter circuitry is configurable to selectively couple either a first signal of the first interface or a second signal of the second interface to a first pad of the pin resources based on a pin distribution between the first interface and the second interface.
Abstract:
An integrated circuit device comprises pin resources, a memory controller circuit, a network interface controller circuit, and transmitter circuitry. The pin resources comprise pads coupled to off-chip pins of the integrated circuit device. The memory controller circuit comprises a first interface and the network interface controller circuit comprises a second interface. The transmitter circuitry is configurable to selectively couple either a first signal of the first interface or a second signal of the second interface to a first pad of the pin resources based on a pin distribution between the first interface and the second interface.
Abstract:
A system and method are provided for controlling a radio frequency (RF) power amplifier. A magnitude input and a phase input are received for transmission of a RF signal by the RF power amplifier. A digital pulse, having a center position relative to an edge of a reference clock based on the phase input and having a width based on the magnitude input, is generated. The digital pulse is filtered with a resonant matching network to produce the RF signal corresponding to the magnitude input and the phase input.
Abstract:
A system and method are provided for sensing current. A current source is configured to generate a current and a pulsed sense enable signal is generated. A sense voltage across a resistive sense mechanism is sampled according to the sense enable signal, where the sense voltage represents a measurement of the current. A system includes the current source and a current sensing unit. The current source is configured to generate a current. The current sensing unit is coupled the current source and is configured to generate a pulsed sense enable signal and sample the sense voltage across a resistive sense mechanism according to the pulsed sense enable signal.
Abstract:
A system and method are provided for controlling a soft-switched modified buck regulator circuit. A voltage (Vx) across or a current through a pull-down switching mechanism within the modified buck regulator circuit is sensed when the pull-down switching mechanism is enabled, where the pull-down switching mechanism is coupled to an upstream end of an inductor and is coupled in parallel with a capacitor. A target time when the pull-down switching mechanism will be disabled (tlf) is computed and the pull-down transistor is disabled at the computed target time.
Abstract:
A system, method, and computer program product are provided for executing casting-arithmetic instructions. The method comprises receiving a casting-arithmetic instruction that specifies an arithmetic operation to be performed on input data and at least one casting operation of an input casting operation and an output casting operation. Upon determining that the casting-arithmetic instruction specifies the input casting operation, the input casting operation is performed on identified terms comprising the input data. Then the arithmetic operation is performed on the input data to generate an arithmetic result. Upon determining that the casting-arithmetic instruction specifies the output casting operation, the output casting operation is performed on the arithmetic result.
Abstract:
A system includes a control circuit and first, second, and third ground-referenced single-ended signaling (GRS) driver circuits that are each coupled to an output signal. The control circuit is configured to generate a first, second, and third set of control signals that are each based on a respective phase of a clock signal. Each GRS driver circuit is configured to pre-charge a capacitor to store a charge based on the respective set of control signals during at least one phase of the clock signal and drive the output signal relative to a ground network by discharging the charge during a respective phase of the clock signal.