-
公开(公告)号:US11897471B2
公开(公告)日:2024-02-13
申请号:US18162576
申请日:2023-01-31
Applicant: NVIDIA Corporation
Inventor: Sayed Mehdi Sajjadi Mohammadabadi , Berta Rodriguez Hervas , Hang Dou , Igor Tryndin , David Nister , Minwoo Park , Neda Cvijetic , Junghyun Kwon , Trung Pham
IPC: B60W30/18 , G06N3/08 , G08G1/01 , B60W30/095 , B60W60/00 , B60W30/09 , G06V20/56 , G06V10/25 , G06V10/764 , G06V10/80 , G06V10/82 , G06V20/70 , G06V10/75
CPC classification number: B60W30/18154 , B60W30/09 , B60W30/095 , B60W60/0011 , G06N3/08 , G06V10/25 , G06V10/751 , G06V10/764 , G06V10/803 , G06V10/82 , G06V20/56 , G06V20/588 , G06V20/70 , G08G1/0125
Abstract: In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersections in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs—such as bounding box coordinates for intersections, intersection coverage maps corresponding to the bounding boxes, intersection attributes, distances to intersections, and/or distance coverage maps associated with the intersections. The outputs may be decoded and/or post-processed to determine final locations of, distances to, and/or attributes of the detected intersections.
-
公开(公告)号:US12136249B2
公开(公告)日:2024-11-05
申请号:US17549418
申请日:2021-12-13
Applicant: NVIDIA Corporation
Inventor: Igor Tryndin , Abhishek Bajpayee , Yu Wang , Hae-Jong Seo
IPC: G06V10/60 , B60Q1/14 , G06V10/25 , G06V20/58 , H05B47/125
Abstract: In various examples, contrast values corresponding to pixels of one or more images generated using one or more sensors of a vehicle may be computed to detect and identify objects that trigger glare mitigating operations. Pixel luminance values are determined and used to compute a contrast value based on comparing the pixel luminance values to a reference luminance value that is based on a set of the pixels and the corresponding luminance values. A contrast threshold may be applied to the computed contrast values to identify glare in the image data to trigger glare mitigating operations so that the vehicle may modify the configuration of one or more illumination sources so as to reduce glare experienced by occupants and/or sensors of the vehicle.
-
公开(公告)号:US20250029357A1
公开(公告)日:2025-01-23
申请号:US18901977
申请日:2024-09-30
Applicant: NVIDIA Corporation
Inventor: Igor Tryndin , Abhishek Bajpayee , Yu Wang , Hae-Jong Seo
IPC: G06V10/60 , B60Q1/14 , G06V10/25 , G06V20/58 , H05B47/125
Abstract: In various examples, contrast values corresponding to pixels of one or more images generated using one or more sensors of a vehicle may be computed to detect and identify objects that trigger glare mitigating operations. Pixel luminance values are determined and used to compute a contrast value based on comparing the pixel luminance values to a reference luminance value that is based on a set of the pixels and the corresponding luminance values. A contrast threshold may be applied to the computed contrast values to identify glare in the image data to trigger glare mitigating operations so that the vehicle may modify the configuration of one or more illumination sources so as to reduce glare experienced by occupants and/or sensors of the vehicle.
-
公开(公告)号:US20240101118A1
公开(公告)日:2024-03-28
申请号:US18537527
申请日:2023-12-12
Applicant: NVIDIA Corporation
Inventor: Sayed Mehdi Sajjadi Mohammadabadi , Berta Rodriguez Hervas , Hang Dou , Igor Tryndin , David Nister , Minwoo Park , Neda Cvijetic , Junghyun Kwon , Trung Pham
IPC: B60W30/18 , B60W30/09 , B60W30/095 , B60W60/00 , G06N3/08 , G06V10/25 , G06V10/75 , G06V10/764 , G06V10/80 , G06V10/82 , G06V20/56 , G06V20/70 , G08G1/01
CPC classification number: B60W30/18154 , B60W30/09 , B60W30/095 , B60W60/0011 , G06N3/08 , G06V10/25 , G06V10/751 , G06V10/764 , G06V10/803 , G06V10/82 , G06V20/56 , G06V20/588 , G06V20/70 , G08G1/0125
Abstract: In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersections in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs—such as bounding box coordinates for intersections, intersection coverage maps corresponding to the bounding boxes, intersection attributes, distances to intersections, and/or distance coverage maps associated with the intersections. The outputs may be decoded and/or post-processed to determine final locations of, distances to, and/or attributes of the detected intersections.
-
公开(公告)号:US20200293796A1
公开(公告)日:2020-09-17
申请号:US16814351
申请日:2020-03-10
Applicant: NVIDIA Corporation
Inventor: Sayed Mehdi Sajjadi Mohammadabadi , Berta Rodriguez Hervas , Hang Dou , Igor Tryndin , David Nister , Minwoo Park , Neda Cvijetic , Junghyun Kwon , Trung Pham
Abstract: In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersections in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs—such as bounding box coordinates for intersections, intersection coverage maps corresponding to the bounding boxes, intersection attributes, distances to intersections, and/or distance coverage maps associated with the intersections. The outputs may be decoded and/or post-processed to determine final locations of, distances to, and/or attributes of the detected intersections.
-
6.
公开(公告)号:US20230186593A1
公开(公告)日:2023-06-15
申请号:US17549418
申请日:2021-12-13
Applicant: NVIDIA Corporation
Inventor: Igor Tryndin , Abhishek Bajpayee , Yu Wang , Hae-Jong Seo
IPC: G06V10/60 , G06V20/58 , G06V10/25 , B60Q1/14 , H05B47/125
CPC classification number: G06V10/60 , B60Q1/1423 , G06V10/25 , G06V20/58 , H05B47/125
Abstract: In various examples, contrast values corresponding to pixels of one or more images generated using one or more sensors of a vehicle may be computed to detect and identify objects that trigger glare mitigating operations. Pixel luminance values are determined and used to compute a contrast value based on comparing the pixel luminance values to a reference luminance value that is based on a set of the pixels and the corresponding luminance values. A contrast threshold may be applied to the computed contrast values to identify glare in the image data to trigger glare mitigating operations so that the vehicle may modify the configuration of one or more illumination sources so as to reduce glare experienced by occupants and/or sensors of the vehicle.
-
公开(公告)号:US20230166733A1
公开(公告)日:2023-06-01
申请号:US18162576
申请日:2023-01-31
Applicant: NVIDIA Corporation
Inventor: Sayed Mehdi Sajjadi Mohammadabadi , Berta Rodriguez Hervas , Hang Dou , Igor Tryndin , David Nister , Minwoo Park , Neda Cvijetic , Junghyun Kwon , Trung Pham
IPC: B60W30/18 , G06N3/08 , G08G1/01 , B60W30/095 , B60W60/00 , B60W30/09 , G06V20/56 , G06V10/25 , G06V10/764 , G06V10/80 , G06V10/82 , G06V20/70
CPC classification number: B60W30/18154 , G06N3/08 , G08G1/0125 , B60W30/095 , B60W60/0011 , B60W30/09 , G06V20/588 , G06V10/25 , G06V10/764 , G06V10/803 , G06V10/82 , G06V20/70 , G06V20/56
Abstract: In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersections in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs—such as bounding box coordinates for intersections, intersection coverage maps corresponding to the bounding boxes, intersection attributes, distances to intersections, and/or distance coverage maps associated with the intersections. The outputs may be decoded and/or post-processed to determine final locations of, distances to, and/or attributes of the detected intersections.
-
公开(公告)号:US11648945B2
公开(公告)日:2023-05-16
申请号:US16814351
申请日:2020-03-10
Applicant: NVIDIA Corporation
Inventor: Sayed Mehdi Sajjadi Mohammadabadi , Berta Rodriguez Hervas , Hang Dou , Igor Tryndin , David Nister , Minwoo Park , Neda Cvijetic , Junghyun Kwon , Trung Pham
CPC classification number: G06V20/588 , B60W30/09 , B60W30/095 , B60W60/0011 , G06N3/08 , G06V10/751 , G08G1/0125
Abstract: In various examples, live perception from sensors of a vehicle may be leveraged to detect and classify intersections in an environment of a vehicle in real-time or near real-time. For example, a deep neural network (DNN) may be trained to compute various outputs—such as bounding box coordinates for intersections, intersection coverage maps corresponding to the bounding boxes, intersection attributes, distances to intersections, and/or distance coverage maps associated with the intersections. The outputs may be decoded and/or post-processed to determine final locations of, distances to, and/or attributes of the detected intersections.
-
-
-
-
-
-
-