摘要:
A thin-film semiconductor device having a vertical TFT which includes a gate insulating film formed on a sidewall of a throughhole formed in an insulating layer; a thin-film semiconductor layer formed on the gate insulating film; and a gate electrode formed within the insulating layer. The gate electrode, the gate insulating film, and the thin-film semiconductor layer together form a lateral MOS structure. The thin-film semiconductor layer is connected to a bit line at the bottom of the throughhole and to a storage node of a capacitor formed over the switching transistor.
摘要:
A semiconductor memory of the invention includes a semiconductor substrate having a plurality of transistors, a plurality of stacked capacitors connected to portions of the plurality of transistors, a plurality of first level interconnection layers connected to other portions of the plurality of transistors, and a plurality of second level interconnection layers disposed above the stacked capacitors and the first level interconnection layers. Each of the plurality of stacked capacitors includes a first electrode layer, a capacitance insulating film formed on top of the first electrode layer, and a second electrode layer formed on top of the capacitance insulating film. The second electrode layer is connected to a portion of one of the plurality of second level interconnection layers. At least portions of the plurality of first level interconnection layers are connected to other portions of the plurality of second level interconnection layers. Each of the plurality of first level interconnection layers shares the same layer as at least one of the first electrode layer and the second electrode layer.
摘要:
Disclosed is a semiconductor integrating circuit having stacked capacitor cells. Each of the cells includes an electric charge storage electrode for storing an electric charge, and a capacitor insulation film and opposite plate electrode integrated thereon. The electric charge storage electrode consists essentially of a bottom and a part in at least double frame-like portion or at least one column-like portion and at least one frame-like portion surrounding the column-like portion rising upwardly from the bottom surface. The capacitor deposited film consists of a dielectric material film deposited on all of the bottom plane and all surfaces of the charge storage electrode, and constructs a capacitor in cooperation with the opposite plate electrode. The described method for making a stacked capacitor cell can make it possible to form self-aligned capacitors by repeating a deposition of an oxide film and a conductive film and an anisotropic etching.
摘要:
A new semiconductor memory device for performing a read/write of information of randomly accessed address includes a plurality of memory cells put in parallel arrays. Each memory cell includes a switching transistor region and a capacitor region. The capacitor regions of the two adjacent memory cells are formed in a common region over the switching transistor region of the two adjacent memory cells. The charge storage electrode of the capacitor region has the shape of a loop. The charge storage electrodes are formed by using self-alignment.
摘要:
An n-channel active region, a p-channel active region and an isolation insulating film are formed, and a silicon film is deposited via a gate insulating film. After introducing n-type impurities into the n-channel region and p-type impurities into the p-channel region, a silicon gate electrode is formed in such a manner that its width is enlarged only in the boundary portion between the n-channel region and the p-channel region. After forming a side wall insulating film, an n-channel diffusion layer and a p-channel diffusion layer, a metal silicide layer is formed in a self-aligned manner on the surfaces of the silicon gate electrode, the n-channel diffusion layer and the p-channel diffusion layer.
摘要:
On a semiconductor substrate are successively deposited a silicon dioxide film and a silicon nitride film. The silicon nitride film, the silicon dioxide film, and the semiconductor substrate are sequentially etched using a photoresist film with an opening corresponding to an isolation region, thereby forming a trench. After depositing a diffusion preventing film, there is deposited an insulating film for isolation having reflowability. Although a void is formed in the insulating film for isolation in the isolation region, the insulating film for isolation is caused to reflow, thereby eliminating the void. After that, the whole substrate is planarized by CMP so as to remove the silicon nitride film and the silicon dioxide film, followed by the formation of gate insulating films, gate electrodes, sidewalls, and source/drain regions in respective element formation regions. Thus, in a highly integrated semiconductor device having a trench isolation, degradation of reliability resulting from the opening of the void in the surface of isolation is prevented.
摘要:
An isolation is formed in a part of a P-well of a semiconductor substrate. A resistor film as a first conductor member is formed on the isolation. An insulating film covering the resistor film except for contact formation regions and an upper electrode film as a second conductor member are formed simultaneously with the formation of a gate electrode and a gate oxide film. Silicide films of a refractory metal are formed on the respective surfaces of the gate electrode, N-type high-concentration diffusion layers, the contact formation regions of the resistor film, and the upper electrode film. By utilizing a salicide process, a resistor and an inductor each occupying a small area can be formed without lowering the resistance of the resistor film. A capacitor, the resistor, and like component are selectively allowed to function.
摘要:
In a first region of a semiconductor substrate, there are formed MIS transistors each composed of a gate insulating film, a gate electrode, and source/drain regions. In a second region of the semiconductor substrate, there is formed an impurity diffusion layer serving as a conductive layer. On an interlayer insulating film, there are formed an antenna interconnection connected to the gate electrodes and an interconnection for charge dissipation connected to the conductive layer. During the process of dry etching for forming the interconnections, charges move into the semiconductor substrate via the interconnection for charge dissipation. The deterioration of the gate insulating film caused by the injection of charges into the gate electrode is suppressed and the degradation of characteristics of the MIS transistor including a shift in threshold is also suppressed. Even in the case where a floating interconnection region is present contiguously to the antenna interconnection, the provision of the interconnection for charge dissipation reduces the amount of shift in the threshold of each of the MIS transistors and equalizes the respective thresholds of the MIS transistors.
摘要:
By symmetrically forming source and drain regions to the gate electrodes, electrically symmetrical transistor characteristics are obtained. After forming the first source and drain regions by large-tilt-angle ion implantation, without a sidewall in the gate electrode or after forming a sidewall shorter than the distance in the lateral direction of the second source and drain regions from the end of the mask for ion implantation, the diffusion of the second source and drain regions in the lateral direction is restricted to the maximum extent by heat treatment for a short time, and then the end of the gate electrode and the end of the second source and drain regions are matched, or their overlap region is formed. As a result, the manufacturing method of the MOS transistor results in both high performance and high reliability.
摘要:
An isolation which is higher in a stepwise manner than an active area of a silicon substrate is formed. On the active area, an FET including a gate oxide film, a gate electrode, a gate protection film, sidewalls and the like is formed. An insulating film is deposited on the entire top surface of the substrate, and a resist film for exposing an area stretching over the active area, a part of the isolation and the gate protection film is formed on the insulating film. There is no need to provide an alignment margin for avoiding interference with the isolation and the like to a region where a connection hole is formed. Since the isolation is higher in a stepwise manner than the active area, the isolation is prevented from being removed by over-etch in the formation of a connection hole to come in contact with a portion where an impurity concentration is low in the active area. In this manner, the integration of a semiconductor device can be improved and an area occupied by the semiconductor device can be decreased without causing degradation of junction voltage resistance and increase of a junction leakage current in the semiconductor device.