摘要:
Storage solutions of silsesquioxane and siloxane polymers are obtained by means of a silicon containing solvent composition. The solution has at least one polymer having a formula of [(HSiO.sub.1.5).sub.x O.sub.y ].sub.n, (HSiO.sub.1.5).sub.n, [(HSiO.sub.1.5).sub.x O.sub.y (RSiO.sub.1.5).sub.z ].sub.n, [(HSiO.sub.1.5).sub.x (RSiO.sub.1.5).sub.y ].sub.n or [(HSiO.sub.1.5).sub.x O.sub.y (RSiO.sub.1.5).sub.z ].sub.n wherein x=about 6 to about 20, y=1 to about 3, z=about 6 to about 20, n=1 to about 4,000, and each R is independently H, C.sub.1 to C.sub.8 alkyl or C.sub.6 to C.sub.12 aryl. The solvent has the formula of (CH.sub.3).sub.3 Si--O--[Si(CH.sub.3).sub.2 ].sub.a --Si(CH.sub.3).sub.3, (CH.sub.3 CH.sub.2)Si--O--[Si(CH.sub.3 CH.sub.2).sub.2 ].sub.a --SiCH.sub.3 CH.sub.2).sub.3, R.sub.3 Si--O--[SiR'.sub.2 ].sub.a --SiR.sub.3, [O--Si(CH.sub.3).sub.2 ].sub.b, [O--Si(CH.sub.3 CH.sub.2).sub.2 ].sub.b or [O--SiR'.sub.2 ].sub.n wherein a=0-5, b=3-5, and each R' is independently H or C.sub.1 to C.sub.8 alkyl.
摘要:
Novel processes for preparing hydridosiloxane and organohydridosiloxane resins are disclosed. The processes of the invention broadly provide for the steps of contacting a silane monomer with a solid state catalyst in the presence of a reaction mixture that includes a nonpolar, e.g., hydrocarbon, solvent, and a polar solvent, e.g., alcohol and water. The process is conducted under conditions effective to catalytically convert said silane monomer into hydridosiloxanes and organohydridosiloxanes. Recovery of the products is advantageously aided by the ease of separating the solid state catalyst from the reaction mixture. Hydridosiloxanes and organohydridosiloxanes resins produced by the processes of the invention are also provided.
摘要:
A photovoltaic device includes at least one photovoltaic cell, a flexible glass layer formed over the at least one photovoltaic cell and a transparent and abrasion resistant film which includes an organic-inorganic hybrid material formed over the glass layer.
摘要:
Provided are novel photovoltaic module structures and related fabrication techniques. According to various embodiments, the structures include a structural bond related between two sealing sheets of the photovoltaic module configured to support one sealing sheet with respect to the other and, in certain embodiments, to support photovoltaic cells with respect to both sealing sheets. In certain embodiments, a photovoltaic module is fabricated without a back encapsulant layer, and the back sealing sheet is supported by the structural bond. The structural bond may also be used as a moisture barrier in addition or instead of an edge seal. The structural bond material can include a silicone-based polymer, which provides good adhesive and UV resistance properties. The structural bond may be formed by a structural bonding material that is dispensed around the photovoltaic cells.
摘要:
A frameless photovoltaic module retains the required load rating by incorporation of an oriented fibrous reinforcement (e.g., fibers, scrim or mesh) in the back side encapsulant, in the back sheet, or as a separate sheet between the encapsulant and the back sheet to increase the overall stiffness of the module. The reinforcement is compatible with the materials around it, in particular having good wet out, and may be freestanding or anchored to outer edges of the module, for example to the front glass, by means of an adhesive in order to further enhance the stiffness conferred to the module.
摘要:
Provided are novel back sheets for solar module encapsulation. According to various embodiments, the back sheets are ungrounded and flexible. In certain embodiments, the back sheets include an integrated flexible and electrically isolated moisture barrier. The electrically isolated moisture barrier may be a thin metallic sheet, e.g., an aluminum foil. The electrically isolated, flexible moisture barrier eliminates the need for grounding.
摘要:
Multilayer articles such as thin-film solar cells can be effectively tested under thermal load in a mini-module that includes a chamber or enclosure in which one or more laminated multilayer articles are housed. The inner dimensions of the chamber, at least along the axis that is perpendicular to the plane defined by the laminated solar cells, are configured to remain substantially constant during testing. Cooling the laminated solar cells in the mini-module device causes the encapsulant material to shrink and thereby induces accelerated failures in the laminated solar cells and associated structures. A technique of detecting the presence of defects or failures is near infrared radiation thermography wherein NIR images of the laminated solar cells are taken during the cooling process. The color patterns manifested from the cooled laminated solar cells can reveal the location, nature and extent of the defect or failure.
摘要:
A photovoltaic module having a light transmissive front layer, a back layer, and a plurality of interconnected photovoltaic cells disposed between the light transmissive front layer and the back layer has a CTE-modified composite encapsulant is interposed between the plurality of solar cells and the light transmissive front layer. The composite encapsulant includes a bulk encapsulant transmissive to visible and near visible wavelengths of the solar spectrum and having a base coefficient of thermal (CTE) expansion, and an encapsulant CTE modifier in the bulk encapsulant. The encapsulant CTE modifier is substantially evenly distributed through the composite encapsulant thickness and interacts with the bulk encapsulant to reduce the effective CTE of the composite encapsulant below that of the bulk encapsulant.
摘要:
Provided are novel back sheets for solar module encapsulation. According to various embodiments, the back sheets are ungrounded and flexible. In certain embodiments, the back sheets include an integrated flexible and electrically isolated moisture barrier and a seal around the edge of the moisture barrier. The electrically isolated moisture barrier may be a thin metallic sheet, e.g., an aluminum foil. The electrically isolated, flexible moisture barrier eliminates the need for grounding.
摘要:
A method of encapsulating an environmentally sensitive device. The method includes providing a substrate; placing at least one environmentally sensitive device adjacent to the substrate; and depositing at least one barrier stack adjacent to the environmentally sensitive device, the at least one barrier stack comprising at least one barrier layer and at least one polymeric decoupling layer, wherein the at least one polymeric decoupling layer is made from at least one polymer precursor, and wherein the polymeric decoupling layer has at least one of: a reduced number of polar regions; a high packing density; a reduced number of regions that have bond energies weaker than a C—C covalent bond; a reduced number of ester moieties; increased Mw of the at least one polymer precursor; increased chain length of the at least one polymer precursor; or reduced conversion of C═C bonds. An encapsulated environmentally sensitive device is also described.