摘要:
In forming a metal or metal silicide film by CVD, a fluoro-silane is used as a reaction gas, or a fluoro-silane is added to a source gas. Examples of the metal halide used in the present invention include fluorides and chlorides of tungsten, molybdenum, titanium, tantalum and niobium. Among them, fluorides of tungsten and molybdenum are more desirable particularly from the viewpoint of the availability of the deposited metal or metal silicide. It is preferred that the source gases, i.e. silane series gas and metal halide, be diluted with a carrier gas such as nitrogen, hydrogen, helium or argon, and this is also true of the fluoro-silane. The total pressure is preferably 0.01 to 10 Torr. The reaction temperature is desirably 200.degree. to 800.degree. C., more desirably 300.degree. to 500.degree. C. Plasma CVD instead of thermal CVD may be employed for the purpose of lowering the reaction temperature.
摘要:
A semiconductor integrated circuit device and a manufacturing method therefor provide advantages that undulations are prevented from being produced in polycrystal silicon plugs in bit line contact holes and that the undesired phenomenon of transversally etching silicide film at contacts of the bit lines and the polycrystal silicon plugs is avoided. The bit lines formed when forming a first wiring layer are made of a laminate film having a titanium film, a titanium nitride film and a tungsten film, and a titanium silicide film containing nitrogen or oxygen is formed in contact areas of the bit lines and plugs. A titanium silicide film containing nitrogen or oxygen is also formed in contact areas of the first wiring layer and semiconductor substrate. The titanium silicide film may be replaced by silicide film containing nitrogen or oxygen, cobalt silicide film containing nitrogen or oxygen or cobalt silicide film.
摘要:
A semiconductor integrated circuit device and a method of manufacturing such a device provides the advantages that undulations are prevented from being produced in the polycrystal silicon plugs in the bit line contact holes and that the undesired phenomenon of transversally etching the silicide film at the contacts of the bit lines and the polycrystal silicon plugs is avoided. The bit lines BL formed at the time of forming a first wiring layer 18 is made of a laminate film having a titanium film 18a, a titanium nitride film 18b and a tungsten film 18c and a titanium silicide film 20 containing nitrogen or oxygen is formed in the contact areas of the bit lines BL and the plugs 19. A titanium silicide film 20 containing nitrogen or oxygen is also formed in the contact areas of the first wiring layer 18 and the semiconductor substrate 1. The titanium silicide film 20 may be replaced by a tungsten silicide film containing nitrogen or oxygen, a cobalt silicide film containing nitrogen or oxygen or a cobalt silicide film.
摘要:
In a DRAM having a capacitor-over-bitline structure in which the capacitive insulating film of an information storing capacitive element C is formed of a high dielectric material such as Ta2O5 (tantalum oxide) film 46, the portions of bit lines BL and first-layer interconnect lines 23 to 26 of a peripheral circuit which are in contact with at least an underlying silicon oxide film 28 are formed of a W film, the bit lines BL and the interconnect lines 23 to 26 being arranged below the information storing capacitive element C, whereby the adhesion at the interface between the bit lines BL and the interconnect lines 23 to 26 and the silicon oxide film is improved in terms of high-temperature heat treatment to be performed when the capacitive insulating film is being formed.
摘要翻译:在具有电容器的位线结构的DRAM中,信息存储电容元件C的电容绝缘膜由诸如Ta 2 O 5(氧化钽)膜46的高电介质材料形成,位线BL和第一 - 与W膜形成的与外部电路至少底层的氧化硅膜28接触的层间布线23〜26,位线BL和布线23〜26配置在信息存储电容元件C的下方 从而在形成电容绝缘膜时进行的高温热处理方面提高了位线BL与布线23〜26之间界面处的粘附性和氧化硅膜。
摘要:
In a DRAM having a capacitor-over-bitline structure in which the capacitive insulating film of an information storing capacitive element C is formed of a high dielectric material such as Ta2O5 (tantalum oxide) film 46, the portions of bit lines BL and first-layer interconnect lines 23 to 26 of a peripheral circuit which are in contact with at least an underlying silicon oxide film 28 are formed of a W film, the bit lines BL and the interconnect lines 23 to 26 being arranged below the information storing capacitive element C, whereby the adhesion at the interface between the bit lines BL and the interconnect lines 23 to 26 and the silicon oxide film is improved in terms of high-temperature heat treatment to be performed when the capacitive insulating film is being formed.
摘要翻译:在具有电容器的位线结构的DRAM中,信息存储电容元件C的电容绝缘膜由诸如Ta 2 O 5(氧化钽)膜46的高电介质材料形成,位线BL和第一 - 与W膜形成的与外部电路至少底层的氧化硅膜28接触的层间布线23〜26,位线BL和布线23〜26配置在信息存储电容元件C的下方 从而在形成电容绝缘膜时进行的高温热处理方面提高了位线BL与布线23〜26之间界面处的粘附性和氧化硅膜。
摘要:
In a DRAM having a capacitor-over-bitline structure in which the capacitive insulating film of an information storing capacitive element C is formed of a high dielectric material such as Ta2O5 (tantalum oxide) film 46, the portions of bit lines BL and first-layer interconnect lines 23 to 26 of a peripheral circuit which are in contact with at least an underlying silicon oxide film 28 are formed of a W film, the bit lines BL and the interconnect lines 23 to 26 being arranged below the information storing capacitive element C, whereby the adhesion at the interface between the bit lines BL and the interconnect lines 23 to 26 and the silicon oxide film is improved in terms of high-temperature heat treatment to be performed when the capacitive insulating film is being formed.
摘要翻译:在具有电容器的位线结构的DRAM中,信息存储电容元件C的电容绝缘膜由诸如Ta 2 O 5(氧化钽)膜46的高电介质材料形成,位线BL和第一 - 与W膜形成的与外部电路至少底层的氧化硅膜28接触的层间布线23〜26,位线BL和布线23〜26配置在信息存储电容元件C的下方 从而在形成电容绝缘膜时进行的高温热处理方面提高了位线BL与布线23〜26之间界面处的粘附性和氧化硅膜。
摘要:
A semiconductor device includes memory cells each having an MISFET for memory selection formed on one major surface of a semiconductor substrate and a capacitive element comprised of a lower electrode electrically connected at a bottom portion to one of a source and drain of the MISFET for memory selection via a first metal layer and an upper electrode formed on the lower electrode via a capacitive insulating film. The lower electrode has a thickness of 30 nm or greater at the bottom portion thereof. Sputtering with a high ionization ratio and high directivity, such as PCM, is adapted to the formation of the lower electrode to make only the bottom portion of a capacitor thicker.
摘要:
The semiconductor device is formed according to the following steps. A TiN film 71 and a W film 72 are deposited on a silicon oxide film 64 including the inside of a via-hole 66 by the CVD method and thereafter, the W film 72 and TiN film 71 on the silicon oxide film 64 are etched back to leave only the inside of the via-hole 66 and form a plug 73. Then, a TiN film 74, Al-alloy film 75, and Ti film 76 are deposited on the silicon oxide film 64 including the surface of the plug 73 by the sputtering method and thereafter, the Ti film 76, Al-alloy film 75, and TiN film 74 are patterned to form second-layer wirings 77 and 78.
摘要:
The semiconductor device is formed according to the following steps. A TiN film 71 and a W film 72 are deposited on a silicon oxide film 64 including the inside of a via-hole 66 by the CVD method and thereafter, the W film 72 and TiN film 71 on the silicon oxide film 64 are etched back to leave only the inside of the via-hole 66 and form a plug 73. Then, a TiN film 74, Al-alloy film 75, and Ti film 76 are deposited on the silicon oxide film 64 including the surface of the plug 73 by the sputtering method and thereafter, the Ti film 76, Al-alloy film 75, and TiN film 74 are patterned to form second-layer wirings 77 and 78.
摘要:
The semiconductor device is formed according to the following steps. A TiN film 71 and a W film 72 are deposited on a silicon oxide film 64 including the inside of a via-hole 66 by the CVD method and thereafter, the W film 72 and TiN film 71 on the silicon oxide film 64 are etched back to leave only the inside of the via-hole 66 and form a plug 73. Then, a TiN film 74, Al-alloy film 75, and Ti film 76 are deposited on the silicon oxide film 64 including the surface of the plug 73 by the sputtering method and thereafter, the Ti film 76, Al-alloy film 75, and TiN film 74 are patterned to form second-layer wirings 77 and 78.