Scanning electron microscope
    1.
    发明授权
    Scanning electron microscope 有权
    扫描电子显微镜

    公开(公告)号:US08698080B2

    公开(公告)日:2014-04-15

    申请号:US12289461

    申请日:2008-10-28

    IPC分类号: G01N23/00

    摘要: An object of the invention is to reduce the beam drift in which the orbit of the charged particle beam is deflected by a potential gradient generated by a nonuniform sample surface potential on a charged-particle-beam irradiation area surface, the nonuniform sample surface potential being generated by electrification made when observing an insulating-substance sample using a charged particle beam. Energy of the charged particle beam to be irradiated onto the sample is set so that generation efficiency of secondary electrons generated from the sample becomes equal to 1 or more. A flat-plate electrode (26) is located in such a manner as to be directly opposed to the sample. Here, the flat-plate electrode is an electrode to which a voltage can be applied independently, and which is equipped with a hole through which a primary charged particle beam can pass. Furthermore, a voltage can be applied independently to a sample stage (12) on which the sample is mounted. Here, the sample stage's surface directly opposed to the sample is formed into a planarized structure with no projections and depressions thereon. Also, diameter D of the hole provided in the flat-plate electrode (26) and distance L between the flat-plate electrode (26) and the sample are set such that a relation of D/L≦1.5 is satisfied.

    摘要翻译: 本发明的目的是减少带电粒子束的轨道偏转由带电粒子束照射区域表面上的不均匀样品表面电位产生的电位梯度的光束漂移,不均匀的样品表面电位为 通过使用带电粒子束观察绝缘物质样品时进行通电而产生。 设定要照射到样品上的带电粒子束的能量被设定为使得从样品产生的二次电子的产生效率等于1或更大。 平板电极(26)以与样品直接相对的方式定位。 这里,平板电极是能够独立施加电压的电极,并且具有一次带电粒子束可以穿过的孔。 此外,可以独立地对安装有样品的样品台(12)施加电压。 这里,与样品直接相对的样品台的表面形成为在其上没有凸起和凹陷的平坦化结构。 此外,设置在平板电极(26)中的孔的直径D和平板电极(26)与样品之间的距离L被设定为使得满足D / L< nlE; 1.5的关系。

    Scanning electron microscope
    2.
    发明申请
    Scanning electron microscope 有权
    扫描电子显微镜

    公开(公告)号:US20070057183A1

    公开(公告)日:2007-03-15

    申请号:US10566634

    申请日:2005-08-10

    IPC分类号: G21K7/00

    摘要: An object of the invention is to reduce the beam drift in which the orbit of the charged particle beam is deflected by a potential gradient generated by a nonuniform sample surface potential on a charged-particle-beam irradiation area surface, the nonuniform sample surface potential being generated by electrification made when observing an insulating-substance sample using a charged particle beam. Energy of the charged particle beam to be irradiated onto the sample is set so that generation efficiency of secondary electrons generated from the sample becomes equal to 1 or more. A flat-plate electrode (26) is located in such a manner as to be directly opposed to the sample. Here, the flat-plate electrode is an electrode to which a voltage can be applied independently, and which is equipped with a hole through which a primary charged particle beam can pass. Furthermore, a voltage can be applied independently to a sample stage (12) on which the sample is mounted. Here, the sample stage's surface directly opposed to the sample is formed into a planarized structure with no projections and depressions thereon. Also, diameter D of the hole provided in the flat-plate electrode (26) and distance L between the flat-plate electrode (26) and the sample are set such that a relation of D/L≦1.5 is satisfied.

    摘要翻译: 本发明的目的是减少带电粒子束的轨道偏转由带电粒子束照射区域表面上的不均匀样品表面电位产生的电位梯度的光束漂移,不均匀的样品表面电位为 通过使用带电粒子束观察绝缘物质样品时进行通电而产生。 设定要照射到样品上的带电粒子束的能量被设定为使得从样品产生的二次电子的产生效率等于1或更大。 平板电极(26)以与样品直接相对的方式定位。 这里,平板电极是能够独立施加电压的电极,并且具有一次带电粒子束可以穿过的孔。 此外,可以独立地对安装有样品的样品台(12)施加电压。 这里,与样品直接相对的样品台的表面形成为在其上没有凸起和凹陷的平坦化结构。 此外,设置在平板电极(26)中的孔的直径D和平板电极(26)与样品之间的距离L被设定为使得满足D / L <1.5的关系。

    Scanning electron microscope
    4.
    发明申请
    Scanning electron microscope 有权
    扫描电子显微镜

    公开(公告)号:US20090065694A1

    公开(公告)日:2009-03-12

    申请号:US12289461

    申请日:2008-10-28

    IPC分类号: G21K7/00

    摘要: An object of the invention is to reduce the beam drift in which the orbit of the charged particle beam is deflected by a potential gradient generated by a nonuniform sample surface potential on a charged-particle-beam irradiation area surface, the nonuniform sample surface potential being generated by electrification made when observing an insulating-substance sample using a charged particle beam.Energy of the charged particle beam to be irradiated onto the sample is set so that generation efficiency of secondary electrons generated from the sample becomes equal to 1 or more. A flat-plate electrode (26) is located in such a manner as to be directly opposed to the sample. Here, the flat-plate electrode is an electrode to which a voltage can be applied independently, and which is equipped with a hole through which a primary charged particle beam can pass. Furthermore, a voltage can be applied independently to a sample stage (12) on which the sample is mounted. Here, the sample stage's surface directly opposed to the sample is formed into a planarized structure with no projections and depressions thereon. Also, diameter D of the hole provided in the flat-plate electrode (26) and distance L between the flat-plate electrode (26) and the sample are set such that a relation of D/L≦1. 5 is satisfied.

    摘要翻译: 本发明的目的是减少带电粒子束的轨道偏转由带电粒子束照射区域表面上的不均匀样品表面电位产生的电位梯度的光束漂移,不均匀的样品表面电位为 通过使用带电粒子束观察绝缘物质样品时进行通电而产生。 设定要照射到样品上的带电粒子束的能量被设定为使得从样品产生的二次电子的产生效率等于1或更大。 平板电极(26)以与样品直接相对的方式定位。 这里,平板电极是能够独立施加电压的电极,并且具有一次带电粒子束可以穿过的孔。 此外,可以独立地对安装有样品的样品台(12)施加电压。 这里,与样品直接相对的样品台的表面形成为在其上没有凸起和凹陷的平坦化结构。 此外,设置在平板电极(26)中的孔的直径D和平板电极(26)与样品之间的距离L设定为D / L <1的关系。 5满足。

    Scanning electron microscope
    8.
    发明授权
    Scanning electron microscope 有权
    扫描电子显微镜

    公开(公告)号:US07459681B2

    公开(公告)日:2008-12-02

    申请号:US10566634

    申请日:2005-08-10

    IPC分类号: H01J37/28 H01J37/00 G21K5/08

    摘要: An object of the invention is to reduce the beam drift in which the orbit of the charged particle beam is deflected by a potential gradient generated by a nonuniform sample surface potential on a charged-particle-beam irradiation area surface, the nonuniform sample surface potential being generated by electrification made when observing an insulating-substance sample using a charged particle beam.Energy of the charged particle beam to be irradiated onto the sample is set so that generation efficiency of secondary electrons generated from the sample becomes equal to 1 or more. A flat-plate electrode (26) is located in such a manner as to be directly opposed to the sample. Here, the flat-plate electrode is an electrode to which a voltage can be applied independently, and which is equipped with a hole through which a primary charged particle beam can pass. Furthermore, a voltage can be applied independently to a sample stage (12) on which the sample is mounted. Here, the sample stage's surface directly opposed to the sample is formed into a planarized structure with no projections and depressions thereon. Also, diameter D of the hole provided in the flat-plate electrode (26) and distance L between the flat-plate electrode (26) and the sample are set such that a relation of D/L≦1.5 is satisfied.

    摘要翻译: 本发明的目的是减少带电粒子束的轨道偏转由带电粒子束照射区域表面上的不均匀样品表面电位产生的电位梯度的光束漂移,不均匀的样品表面电位为 通过使用带电粒子束观察绝缘物质样品时进行通电而产生。 设定要照射到样品上的带电粒子束的能量被设定为使得从样品产生的二次电子的产生效率等于1或更大。 平板电极(26)以与样品直接相对的方式定位。 这里,平板电极是能够独立施加电压的电极,并且具有一次带电粒子束可以穿过的孔。 此外,可以独立地对安装有样品的样品台(12)施加电压。 这里,与样品直接相对的样品台的表面形成为在其上没有凸起和凹陷的平坦化结构。 此外,设置在平板电极(26)中的孔的直径D和平板电极(26)与样品之间的距离L被设定为使得满足D / L <1.5的关系。