Abstract:
A light source apparatus includes: a light source; a light source driving section; a light detection section; a temperature detection section; and a control section being configured to, when determining that detected brightness is outside a range of brightness set for detecting abnormality in the light source or the light detection section and detected temperature is within a range of temperature set for detecting the abnormality in the light source or the light detection section, cause the light source driving section to perform driving of the light source for a case of abnormality in the light detection section, and when determining that the detected brightness is outside the range of brightness and the detected temperature is outside the range of temperature, cause the light source driving section to perform driving of the light source for a case of abnormality in the light source.
Abstract:
A fiber sensor includes a light source, and an optical fiber having flexibility to guide light emitted from the light source. The optical fiber has at least one light characteristics conversion portion. The fiber sensor also includes a light-receiving unit to receive the light guided by the optical fiber, and an identification unit having a unique shape on an outer peripheral surface of the optical fiber as compared with a round shape. The identification unit is formed to have a shape enabling at least one of an installation position and posture of the light characteristics conversion portion provided on the optical fiber to be identified.
Abstract:
A light source device includes a semiconductor light source, a light source control section, an optical sensor, a sensor control section, and an intensity adjusting section. The light source control section controls a light quantity per field of light to be emitted from the semiconductor light source, by pulse width modulation. The optical sensor receives the light emitted from the semiconductor light source to acquire a quantity of the received light. The sensor control section controls the optical sensor to detect the light in an exposure period shorter than a minimum pulse width in the pulse width modulation, thereby acquiring the quantity of the received light which is acquired by the optical sensor. The intensity adjusting section adjusts emission intensity of the semiconductor light source on the basis of the quantity of the received light.
Abstract:
An endoscope apparatus includes: first and second cooling units configured to cool first and second light source portions; an image pickup portion configured to generate a picked-up image; and a cooling control portion configured to control amounts of light emission of the light source portions while maintaining an amount-of-light ratio so that the brightness of the picked-up image becomes the target brightness and control cooling based on the information about the amount-of-light ratio and the brightness control information; wherein the cooling control portion decides a cooling capacity of the first cooling units and a cooling capacity of the second cooling units for cooling the respective light source portions for which the amounts of light emission are controlled, at the cooling ratio, so as to cause the light source portions to be included within a predetermined temperature range, based on the brightness control information.
Abstract:
An image pickup system includes an optical sensor configured to pick up an optical image of an object illuminated with light of a plurality of colors emitted from a plurality of semiconductor light emitting elements with an image pickup device and detect each of light amounts of the light emitted from the plurality of semiconductor light emitting elements, and a controller including hardware. The controller adjusts color balance based on the light amounts of the plurality of colors detected at the optical sensor and sets an exposure timing of a light amount detecting unit according to image pickup operation of the image pickup device.
Abstract:
A light guide sensor includes a light source, a light guide member comprising a core which guides light radiated from the light source, a cladding formed around the core, and at least one detecting portion is formed, and a light receiving unit which receives the light that has been guided by the member and has passed via the detecting portion. The detecting portion includes a first opening formed by removal in the outer circumference of the member so that at least part of the cladding is left by a thickness such as not to transmit the light from the core, and a second opening formed within the range of the first opening to transmit the light from the core. A method of forming such a light guide sensor is provided.
Abstract:
A light source apparatus includes first and second light sources having different maximum light amounts used, a first light amount detection section detecting a light amount of first light of the first light source, a second light amount detection section detecting a light amount of second light of the second light source, a light amount limiting section limiting a light amount of light incident upon the second light amount detection section so that light amounts detected in the first light amount detection section and the second light amount detection section match a predetermined value within a detection range when light with the maximum light amounts used are emitted from the first light source and the second light source, and a control section controlling amounts of light emission of the first light source and the second light source based on detection results of the first and second light amount detection sections.
Abstract:
An encoder signal processing circuit is connected to encoder heads outputting an encoder signal in accordance with a relative displacement with respect to a corresponding scale in such a way that signals can be transmitted to and received from the encoder heads, and processes encoder signals from the encoder heads. The circuit includes a processing unit and a processing decision unit. The processing unit generates displacement information from the encoder signal. The processing decision unit decides at least one of content of processing for the encoder heads and content of processing on encoder signals read from the encoder heads after starting to read an encoder signal from one of the encoder heads.
Abstract:
An encoder signal processing circuit is connected to encoder heads outputting an encoder signal in accordance with a relative displacement with respect to a corresponding scale in such a way that signals can be transmitted to and received from the encoder heads, and processes encoder signals from the encoder heads. The circuit includes a processing unit and a processing decision unit. The processing unit generates displacement information from the encoder signal. The processing decision unit decides at least one of content of processing for the encoder heads and content of processing on encoder signals read from the encoder heads after starting to read an encoder signal from one of the encoder heads.
Abstract:
An endoscope system includes: an image pickup device configured to output a digital signal; an EEPROM in which predetermined information concerning an endoscope is recorded; a signal control portion capable of selectively converting data of one of the digital signal outputted from the image pickup device and the predetermined information of the EEPROM to serial data and outputting the serial data; an electro-optical conversion portion configured to convert the data outputted from the signal control portion to an optical signal and output the optical signal; a universal cable; and a data switching portion switched to transfer the predetermined information from the EEPROM by the signal control portion and then transfer the digital signal by the signal control portion. The signal control portion decides through which of a metal transmitting member and an optical transmitting member the predetermined information is transmitted, based on a data amount of the predetermined information.