Abstract:
In an embodiment an optoelectronic component includes a first joining partner including an LED chip with a structured light-emitting surface and a compensation layer applied to the light-emitting surface, wherein the compensation layer has a surface facing away from the light-emitting surface and spaced apart from the light-emitting surface, and wherein the surface forms a first connecting surface, a second joining partner having a second connecting surface, the first and second connecting surfaces being arranged such that they face each other and a bonding layer made of a film of low-melting glass having a layer thickness of not more than 1 μm, wherein the bonding layer bonds the first and second connecting surfaces together, wherein the structure of the light-emitting surface is embedded in the compensation layer, and wherein the first and second connecting surfaces are smooth such that their surface roughness, expressed as center-line roughness, is less than or equal to 50 nm.
Abstract:
In an embodiment an optoelectronic component includes a first joining partner including an LED chip with a structured light-emitting surface and a compensation layer applied to the light-emitting surface, wherein the compensation layer has a surface facing away from the light-emitting surface and spaced apart from the light-emitting surface, and wherein the surface forms a first connecting surface, a second joining partner having a second connecting surface, the first and second connecting surfaces being arranged such that they face each other and a bonding layer made of a film of low-melting glass having a layer thickness of not more than 1 μm, wherein the bonding layer bonds the first and second connecting surfaces together, wherein the structure of the light-emitting surface is embedded in the compensation layer, and wherein the first and second connecting surfaces are smooth such that their surface roughness, expressed as center-line roughness, is less than or equal to 50 nm.
Abstract:
The invention relates to a conversion element comprising a wavelength-converting conversion material, a matrix material in which the conversion material is inserted, and a substrate on which the matrix material and the conversion material are directly arranged, the matrix material comprising at least one condensed sol-gel material selected from the following group: water glass, metal phosphate, aluminium phosphate, monoaluminium phosphate, modified monoaluminium phosphate, alkoxytetramethoxysilane, tetraethyl orthosilicate, methyltrimethoxysilane, methyltriethoxysilane, titanium alkoxide, silica sol, metal alkoxide, metal oxane or metal alkoxane, the conversion element being arranged in the beam path of a laser source, the conversion element being mounted in a mechanically immobile manner in relation to the laser source, and the radiation of the laser source being dynamically arranged in relation to the conversion element.
Abstract:
Various embodiments may relate to a process for producing a scattering layer for electromagnetic radiation. The process may include applying scattering centers onto a carrier, applying glass onto the scattering centers, and liquefying of the glass so that a part of the liquefied glass flows between the scattering centers toward the surface of the carrier, in such a way that a part of the liquefied glass still remains above the scattering centers.
Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes a semiconductor layer sequence having an active region configured to emit radiation at least via a main radiation exit surface during operation and a self-supporting conversion element arranged in a beam path of the semiconductor layer sequence, wherein the self-supporting conversion element includes a substrate and subsequently a first layer, wherein the first layer includes at least one conversion material embedded in a matrix material, wherein the matrix material includes at least one condensed sol-gel material, wherein the condensed sol-gel material has a proportion between 10 and 70 vol % in the first layer, and wherein the substrate is free of the sol-gel material and the conversion material and mechanically stabilizes the first layer.
Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment, an optoelectronic component includes a semiconductor layer sequence having an active region configured to emit radiation at least via a main radiation exit surface and a conversion element arranged directly downstream of the main radiation exit surface, wherein the conversion element is substrate-free and includes a first layer, wherein the first layer includes at least one conversion material embedded in a matrix material, wherein the matrix material includes at least one condensed inorganic sol-gel material selected from the following group consisting of water glass, metal phosphate, aluminum phosphate, modified monoaluminum phosphate, monoaluminum phosphate, alkoxytetramethoxysilane, tetraethylorthosilicate, methyltrimethoxysilane, methyltriethoxysilane, titanium alkoxide, silica sol, metal alkoxide, metal oxane, metal alkoxane, metal oxide, metal silicates, metal sulfates, and tungstates, and wherein the condensed sol-gel material has a proportion between 10 and 70 vol % in the first layer.
Abstract:
Various embodiments may relate to a process for producing a scattering layer for electromagnetic radiation. The process may include applying scattering centers onto a carrier, applying glass onto the scattering centers, and liquefying of the glass so that a part of the liquefied glass flows between the scattering centers toward the surface of the carrier, in such a way that a part of the liquefied glass still remains above the scattering centers.