摘要:
A receiver unit includes at least one single photon avalanche detector element of a Geiger mode and a time-to-digital converter circuit. Each single photon avalanche detector element is enabled to detect a photon in at least one time-gated window, and each single photon avalanche detector element is configured to output an electric pulse in response to detection of a photon of optical radiation within the at least one time-gated window. The time-to-digital converter circuit provides timing data associated with said electric pulse for determination of a distance of a target on the basis of the timing data provided by the time-to-digital converter circuit.
摘要:
A vertical cavity surface emitting laser (VCSEL) configured to operate in a gain switching regime includes a cavity that is terminated by reflectors at both ends for enabling a standing wave of optical radiation therebetween. The cavity comprises at least one quantum well, each of the quantum wells located at a position where a value of a standing wave factor for each quantum well is between zero and one, 0
摘要:
An optical time-of-flight distance measuring device comprises a transmitter and a receiver. The transmitter comprises a semiconductor laser for outputting optical pulses of controllably variable temporal widths. The semiconductor laser operates in an enhanced switching regime for the optical pulses of a minimum generable temporal width of the laser. The receiver comprises a matrix of single photon avalanche detector elements of a Geiger mode, a receiver controller, and one or more time-to-digital converters. The single photon avalanche detector elements detect optical pulses reflected from the target to the matrix, and each of the single photon avalanche detector element outputs an electric signal in response to each detection. A number of the time-to-digital converters is smaller than a number of the single photon avalanche detector elements of the matrix. The receiver controller connects at least two of the single photon avalanche detector elements with different time-to-digital converters. The time-to-digital converters connected with the single photon avalanche detector elements provide timings of detected optical pulses on the basis of each output electrical signal for determination of information associated with a distance of the target.
摘要:
A range imaging apparatus comprises a semiconductor laser transmitter, a receiver, and a data processing unit, a field-of-illumination of the semiconductor transmitter and a field-of-view of the receiver being overlapping. The receiver comprises single photon avalanche detector elements arranged two-dimensionally and operate in a Geiger mode. The semiconductor laser transmitter generates optical pulses repeatedly, a single optical pulse of the optical pulses being output as an optical beam with one or more stripes, which are parallel, one above another, and separate from each other. Each of the stripes of optical beams, which are reflected from objects within the field-of-view, illuminates a detector element configuration of the single photon avalanche detector elements. The data processing unit performs, synchronously with the optical pulses repeatedly generated, a selection of single photon avalanche detector elements of the detector element configurations in response to a generation of an optical pulse that illuminates one or more detector element configurations with the one or more stripes, and determines values corresponding to time-of-flights of said optical pulse based on electrical signals from the single photon avalanche detector elements of the selection for performing range imaging.
摘要:
A vertical cavity surface emitting laser (VCSEL) configured to operate in a gain switching regime includes a cavity that is terminated by reflectors at both ends for enabling a standing wave of optical radiation therebetween. The cavity comprises at least one quantum well, each of the quantum wells located at a position where a value of a standing wave factor for each quantum well is between zero and one, 0
摘要:
A semiconductor laser source of a transmitter (102) in a range imaging apparatus (100) generates an optical pulse at repeated moments, and outputs spatially separate optical beams towards a target zone (114), such that the semiconductor laser source outputs each of the spatially separate of the optical beams at different moments from each other. A detector (105) of a receiver (104) comprises single-photon sub-detector units, at least two groups of the single-photon sub-detector units have separate field of views towards the target zone (114), and the at least two groups of sub-detector units are associated with different optical beams of the spatially separated optical beams on the basis of the separate field-of-views. A timing unit (106) determines a value corresponding to a time-of-flight of the optical pulse output at each of the repeated moments on the basis of a signal from a group of the sub-detector units associated with an optical beams output at said moment. In an embodiment, the semiconductor laser source comprises a plurality of sub-source units each of which may output a unique optical beam. In an embodiment, the timing unit (106) comprises a selector and a number of time-to-digital converters (108). The receiver selector connects a number of the sub-detector units, which detect the optical pulse (110) and the number of which corresponds to the number of output beams, with the number of the time-to-digital converters (108). In an embodiment, the apparatus (100) comprises an electric power source (192) which supplies a constant electric power to the semiconductor laser source at each of the repeated moments in order to increase brightness of the optical beams. Elongated optical beams may be produced by a laser diode bar (several emitting stripes) and a cylinder lens system or a holographic diffuser. Partially overlapping optical beams may provide illuminated rectangles of the optical beams on the target (112).
摘要:
An apparatus is configured to operate in a single fundamental transverse mode and the apparatus includes a waveguide layer between an n-doped cladding layer and a p-doped cladding layer. The waveguide layer includes a first waveguide part, and an active layer located between the first waveguide part and the p-doped cladding layer, the active layer being asymmetrically within the waveguide layer closer to the p-doped cladding layer than the n-doped cladding layer. The refractive index of the n-doped cladding layer being equal to or larger than the p-doped cladding layer. A first end of the first waveguide part is adjacent to the n-doped cladding layer. A second end of the first waveguide part is adjacent to a first end of the active layer. A desired donor density is doped in the first waveguide part for controlling the carrier density dependent internal optical loss in the first waveguide part at high injection levels.
摘要:
A receiver unit includes at least one single photon avalanche detector element of a Geiger mode and a time-to-digital converter circuit. Each single photon avalanche detector element is enabled to detect a photon in at least one time-gated window, and each single photon avalanche detector element is configured to output an electric pulse in response to detection of a photon of optical radiation within the at least one time-gated window. The time-to-digital converter circuit provides timing data associated with said electric pulse for determination of a distance of a target on the basis of the timing data provided by the time-to-digital converter circuit.
摘要:
An apparatus comprises a semiconductor single-photon avalanche detector, and a counter. The detector performs detections of photons of optical radiation caused by an optical excitation pulse to the object. The counter measures timing of each detection made in the detector with respect to the excitation pulse causing the detected photons, and performs at least one of the following: forming a number of Raman detections, forming a number of fluorescence detections. Forming the number of the Raman detections is performed by eliminating an estimate of a number of fluorescence photons in the measurement. Forming the number of the fluorescence detections is performed by eliminating an estimate of a number of Raman photons in the measurement. The estimates are formed in a predetermined manner from the number and timing of the detections.