Abstract:
An apparatus is disclosed in which the apparatus may include a plurality of cores, including a first core, a second core and a third core, and circuitry coupled to the first core. The first core may be configured to process a plurality of instructions. The circuitry may be may be configured to detect that the first core stopped committing a subset of the plurality of instructions, and to send an indication to the second core that the first core stopped committing the subset. The second core may be configured to disable the first core from further processing instructions of the subset responsive to receiving the indication, and to copy data from the first core to a third core responsive to disabling the first core. The third core may be configured to resume processing the subset dependent upon the data.
Abstract:
An apparatus is disclosed in which the apparatus may include a plurality of cores, including a first core, a second core and a third core, and circuitry coupled to the first core. The first core may be configured to process a plurality of instructions. The circuitry may be may be configured to detect that the first core stopped committing a subset of the plurality of instructions, and to send an indication to the second core that the first core stopped committing the subset. The second core may be configured to disable the first core from further processing instructions of the subset responsive to receiving the indication, and to copy data from the first core to a third core responsive to disabling the first core. The third core may be configured to resume processing the subset dependent upon the data.
Abstract:
Implementations of the present disclosure involve an apparatus and/or method for synchronizing at least one newly activated processor with at least one previously running processor. Each processor is configured to generate a heartbeat and operate according to a STICK. When a previously deactivated processor is added, the heartbeat of each active processor is reset and the current STICK is transmitted to the newly activated processor on the next heartbeat. The newly activated processor may then add the heartbeat period to the acquired STICK and begin incrementing the STICK and normal operation after the next heartbeat.
Abstract:
A combo dynamic flop with scan flop circuit includes a flip-flop circuit, a scan control circuit, and an output buffer circuit. The flip-flop circuit includes a dynamic latch circuit and a static latch circuit. The dynamic latch circuit includes a dynamic latch storage node. The static latch circuit includes a static storage node driven by the dynamic latch. The scan control circuit includes a scan slave feed-forward circuit, a scan latch circuit, and a scan driver circuit driven by the scan feed-back circuit. The scan latch circuit includes a scan feed-back circuit, a scan storage node, and a scan feed-forward circuit driven from the static latch. The output buffer circuit includes a dynamic latch driver driven from the dynamic latch circuit and a static driver driven from the static latch circuit.
Abstract:
An apparatus is disclosed in which the apparatus may include a plurality of cores, including a first core, a second core and a third core, and circuitry coupled to the first core. The first core may be configured to process a plurality of instructions. The circuitry may be may be configured to detect that the first core stopped committing a subset of the plurality of instructions, and to send an indication to the second core that the first core stopped committing the subset. The second core may be configured to disable the first core from further processing instructions of the subset responsive to receiving the indication, and to copy data from the first core to a third core responsive to disabling the first core. The third core may be configured to resume processing the subset dependent upon the data.
Abstract:
A rotational synchronizer for metastability resolution is disclosed. A synchronizer includes a plurality of M+1 latches each coupled to receive data through a common data input. The synchronizer further includes a multiplexer having a N inputs each coupled to receive data from an output of a corresponding one of the M+1 latches, and an output, wherein the multiplexer is configured to select one of its inputs to be coupled to the output. A control circuit is configured to cause the multiplexer to sequentially select outputs of the M+1 latches responsive to N successive clock pulses, and further configured to cause the M+1 latches to sequentially latch data received through the common data input.
Abstract:
Implementations of the present disclosure involve an apparatus and/or method for mixing high speed and low speed clock signals during structural testing of a digital integrated circuit to improve the test precision and efficiency. In particular, the apparatus and/or method allow for a testing device to perform stuck-bit testing of the circuit by releasing one or more clock cycles of a low speed clock signal. Further, without having to reset the testing of the circuit, at-speed testing of the circuit may be conducted by the testing device. In one embodiment, at-speed testing occurs by activating a mode signal associated with the circuit design that instructs one or more clock cycles from an internal clock signal to the circuit to be released. The testing device may return to stuck-bit testing at a low speed clock signal, or continue with at-speed testing using the high speed internal clock signal.
Abstract:
A system is disclosed in which the system may include multiple bus switches, and multiple processors. Each processor may be coupled to each bus switch. Each processor may be configured to initiate a transfer of data to a given bus switch, and detect if a respective link to the given bus switch is inoperable. In response to detecting an inoperable link to a first bus switch, a given processor may be further configured to send a notification message to at least one other processor via at least a second bus switch and to remove routing information corresponding to the inoperable link from a first register. The at least one other processor may be configured to remove additional routing information corresponding to the inoperable link from a second register in response to receiving the notification message from the given processor.
Abstract:
Implementations of the present disclosure involve an apparatus and/or method for adjusting a counter in a computing system to account for drift of the counter value over time compared to another counter of the system. In particular, a processor of the computing system that includes a local counter component may access a counter component of another processor of the system, referred to as the reference counter. By comparing the value of the reference counter to the local counter, the processor may determine any drift that may have occurred over a period of time in the local counter. The calculated drift, or counter error, may be converted into one or more adjustments to the local counter to synchronize the local counter with the reference counter. In one embodiment, the adjustment to the local counter includes increasing the rate at which the local counter is incremented for a period of time.
Abstract:
An apparatus is disclosed in which the apparatus may include a plurality of cores, including a first core, a second core and a third core, and circuitry coupled to the first core. The first core may be configured to process a plurality of instructions. The circuitry may be may be configured to detect that the first core stopped committing a subset of the plurality of instructions, and to send an indication to the second core that the first core stopped committing the subset. The second core may be configured to disable the first core from further processing instructions of the subset responsive to receiving the indication, and to copy data from the first core to a third core responsive to disabling the first core. The third core may be configured to resume processing the subset dependent upon the data.