摘要:
The present invention is directed to a method utilizing a microorganism with reduced isocitrate dehydrogenase activity for the production of methionine.
摘要:
The present invention features improved processes and organisms for the production of methionine. The invention demonstrates that a ΔmetF organism or a ΔmetE AmetH organism, for example, mutants of C. glutamicum or E. coli, can use a methyl capped sulfide source, e.g., dimethyl disulfide (DMDS), as a source of both sulfur and a methyl group, bypassing the need for MetH/MetE and MetF activity and the need to reduce sulfate, for the synthesis of methionine. Also described in this patent are data implicating MetY (also called MetZ) as an enzyme that incorporates a methyl capped sulfide source, e.g., DMDS, into methionine. A ΔmetF ΔmetB strain of C. glutamicum can use a methyl capped sulfide source, e.g., DMDS, as a source of both sulfide and a methyl group. Furthermore, methionine production by engineered prototrophic organisms that overproduce O-acetyl-homoserine was improved by the addition of a methyl capped sulfide source, e.g., DMDS.
摘要:
The present invention features improved processes and organisms for the production of methionine. The invention demonstrates that a ΔmetF organism or a ΔmetE AmetH organism, for example, mutants of C. glutamicum or E. coli, can use a methyl capped sulfide source, e.g., dimethyl disulfide (DMDS), as a source of both sulfur and a methyl group, bypassing the need for MetH/MetE and MetF activity and the need to reduce sulfate, for the synthesis of methionine. Also described in this patent are data implicating MetY (also called MetZ) as an enzyme that incorporates a methyl capped sulfide source, e.g., DMDS, into methionine. A ΔmetF ΔmetB strain of C. glutamicum can use a methyl capped sulfide source, e.g., DMDS, as a source of both sulfide and a methyl group. Furthermore, methionine production by engineered prototrophic organisms that overproduce O-acetyl-homoserine was improved by the addition of a methyl capped sulfide source, e.g., DMDS.
摘要:
The present invention relates to microorganisms, in particular C. glutamicum in which the formation of N5,N10-methylene-THF is increased.The present invention also relates to the use of such microorganisms for producing methionine.
摘要:
This invention relates to methionine producing recombinant microorganisms. Specifically, this invention relates to recombinant strains of Corynebacterium that produce increased levels of methionine compared to their wild-type counterparts and further to methods of generating such microorganisms.
摘要:
The present invention relates to multiple promoters and to expression units comprising them; to the use thereof for regulating transcription and expression of genes; to expression cassettes which comprise multiple promoters or expression units of this kind; to vectors which comprise such expression cassettes; to genetically modified microorganisms which comprise vectors and/or expression units of this kind; and to processes for preparing biosynthetic products by culturing said genetically modified microorganisms.
摘要:
The present invention relates to nulceotide sequences encoding enzymatically active cobalamin-methionine synthase and functional fragments thereof being modified in comparison to the respective wild-type enzyme such that said enzymes show reduced product inhibition by methionine. The present invention also relates to polypeptides being encoded by such nucleotide sequences and host cells comprising such nucleotide sequences. Furthermore, the present invention relates to methods for producing methionine in host organisms by making use of such nucleotide sequences.
摘要:
The present invention is directed to a method utilizing a microorganism with reduced isocitrate dehydrogenase activity for the production of fine chemicals. Said fine chemicals may be amino acids, monomers for polymer synthesis, sugars, lipids, oils, fatty acids or vitamins and are preferably amino acids of the aspartate family, especially methionine or lysine, or derivatives of said amino acids, especially cadaverine. Furthermore, the present invention relates to a recombinant microorganism having a reduced isocitrate dehydrogenase activity in comparison to the initial microorganism and the use of such microorganisms in producing fine chemicals such as aspartate family amino acids and their derivatives.