Abstract:
The present invention relates to a smartphone-based hearing aid which does not employ a separate power supply or digital signal processing device and instead has an analogue interface unit, configured with a single integrated circuit chip, connected between a plurality of microphones and a smartphone, thereby realizing a compact size, reducing the cost and enhancing the audio performance. Instead of employing a digital signal processing chip which is essentially used in the existing hearing aids or personal sound amplifiers, the smartphone-based hearing aid according to the present invention utilizes components such as a smartphone-embedded application processor (AP), RAM, digital-analogue converter, speaker and display and is therefore affordable. In particular, if a CPU and a GPU which are embedded in the application processor of the smartphone are utilized, digital signal processing necessary for the operation of the hearing aid can be performed within a short time of milliseconds (ms) just by using software.
Abstract:
Disclosed is a hearing aid attached to a mobile electronic device. Elements forming the hearing aid are separated into a main hearing aid device and a sub-hearing aid device. The main hearing aid device is attached to the casing of a mobile electronic device and connected to the mobile electronic device through a wired cable, and the sub-hearing aid device is placed in an ear of a user. Other people rarely notice that a user uses the hearing aid because the main hearing aid device is mounted on the casing of a mobile electronic device. The hearing aid is supplied with power from the battery of the mobile electronic device, and has the same size as the casing of the mobile electronic device. Accordingly, a beamforming operation through a microphone array is possible, and use convenience and a level of satisfaction of the hearing aid can be improved.
Abstract:
Disclosed are a USB peripheral apparatus capable of reducing transmission power of a transmission terminal circuit by significantly increasing resistance values of terminations provided at the transmission terminal circuit and a reception terminal circuit as compared with a specific impedance value of a transmission line, and a transmission power reduction method thereof.
Abstract:
A delayed locked loop (DLL) adjusts a duty cycle of an input clock signal and outputs an output clock signal. The DLL includes a phase and duty cycle detector configured to detect a phase and duty cycle of the input clock signal, a duty cycle corrector configured to correct the duty cycle, a control code generator configured to detect coarse lock of the DLL and generate a binary control code corresponding to the detection result, and a delay circuit configured to delay an output signal of the duty cycle corrector by a predetermined time according to the binary control code, tune the duty cycle thereof, and mix the phase thereof, wherein the phase and duty cycle detector, the duty cycle corrector, the control code generator, and the delay circuit form a feedback loop.
Abstract:
A circuit may include a transmitter for generating a signal indicative of input data, an on-chip channel for transmitting the signal from the transmitter, and a receiver comprising a receiving terminal that has a negative resistance value as input resistance of the receiving terminal, the receiver generating a signal indicative of recovered data based on the transmitted signal through the on-chip channel. The circuit may recycle a portion of charge stored in the on-chip channel using charge recycling, and the charge recycling is associated with the negative resistance value of the input resistance.
Abstract:
A data transmission and reception system may include: a data transmission apparatus configured to generate N Tx signals having discrete levels using N binary data, and output the N Tx signals to N single-ended signal lines, respectively, where N is a natural number equal to or larger than 2; and a data reception apparatus configured to receive the N Tx signals transmitted in parallel through the single-ended signal lines, and restore the N binary data by comparing the received N Tx signals to each other.
Abstract:
A data transmission and reception system may include: a data transmission apparatus configured to generate N Tx signals having discrete levels using N binary data, and output the N Tx signals to N single-ended signal lines, respectively, where N is a natural number equal to or larger than 2; and a data reception apparatus configured to receive the N Tx signals transmitted in parallel through the single-ended signal lines, and restore the N binary data by comparing the received N Tx signals to each other.
Abstract:
The present invention relates to a real-time voice recognition apparatus equipped with an application-specific integrated circuits (ASIC) chip and a smartphone, capable, by using one smartphone and one ASIC chip and without using a cloud computer, of assuring personal privacy, and, due to a short delay time, enabling real-time conversion of voice input signals into text for output. When one DRAM chip is optionally added to the real-time voice recognition apparatus, the number of neural network layers is increased thereby significantly improving accuracy of conversion of voice input signals into text.
Abstract:
A circuit may include a transmitter for generating a signal indicative of input data, an on-chip channel for transmitting the signal from the transmitter, and a receiver comprising a receiving terminal that has a negative resistance value as input resistance of the receiving terminal, the receiver generating a signal indicative of recovered data based on the transmitted signal through the on-chip channel. The circuit may recycle a portion of charge stored in the on-chip channel using charge recycling, and the charge recycling is associated with the negative resistance value of the input resistance.
Abstract:
The present invention relates to a microphone with a specific audible area using ultrasound wave, which emits an ultrasound wave toward a sound source positioned in a specific area within a desired distance and a desired direction from the microphone, and extracts a sound signal in an audible frequency range, generated by the sound source, from an ultrasound wave reflected and received from the sound source. The microphone with a specific audible area using ultrasound wave can limit the audible area to an area within a specific angle from a half line starting from the microphone and a specific distance from the microphone, such that a user can selectively hear a desired sound in a noisy environment. When the microphone is applied to a hearing aid, the user can hear only the audible sound generated by the sound source located within the specific audible area in front of the user with the surrounding noise removed.