摘要:
A method for forming gate structures with smooth sidewalls by amorphizing the polysilicon along the gate boundaries is described. This method results in minimal gate depletion effects and improved critical dimension control in the gates of smaller devices. The method involves providing a gate silicon oxide layer on the surface of the semiconductor substrate. A gate electrode layer, such as polysilicon is deposited over the gate silicon oxide followed by a masking oxide layer deposited over the gate electrode layer. The masking oxide layer is patterned for the formation of the gate electrode. An ion implantation of silicon or germanium amorphizes the area of the polysilicon not protected by the masking oxide mask and also amorphizes the area along the boundaries of the polysilicon gate. Thereafter, the amorphized silicon is then removed by an anisotropic etch leaving a narrow area of amorphized silicon on the gate electrode sidewalls under the edges of the masking oxide mask completing the gate structure having smooth sidewalls.
摘要:
A method for forming a MOSFET having an LDD structure with minimal lateral dopant diffusion is described. A gate electrode is provided overlying a gate dielectric layer on a semiconductor substrate. Dielectric spacers are formed on sidewalls of the gate electrode. Source and drain regions are formed associated with the gate electrode. The gate electrode and source and drain regions are silicided. Thereafter, the spacers are removed to expose the semiconductor substrate. LDD regions are formed using plasma doping in the exposed semiconductor substrate between the source and drain regions and the gate electrode to complete formation of an LDD structure in the fabrication of an integrated circuit device.
摘要:
A structure and a process for manufacturing semiconductor devices with improved oxide coverage on the corners of a shallow trench isolation structure is described. The STI trench is etched using a pad oxide and silicon nitride layers as patterning elements. After trench etch, a thin conformal layer of either amorphous, epitaxial or polysilicon is deposited over the silicon nitride and within the trench and annealed. Where the silicon has been deposited on the silicon bottom and sides of the open trench, the annealing effectively forms a single crystal or epitaxial silicon. Next a silicon oxide liner is grown over the conformal silicon layer. The trench is then filled with silicon oxide, the structure is planarized by either chemical mechanical polishing or etching, and the nitride and pad oxide is removed This leaves a polysilicon film on the vertical edges of the filler oxide which extends slightly above the surface of the silicon substrate. A thermal oxidation step is performed converting the poly film into silicon oxide which slightly extends the STI field oxide into the active device region eliminating any reduced oxide coverage or oxide recesses in the corner regions.
摘要:
Test structures including test trenches are used to define critical dimension of trenches in a via level of an integrated circuit to produce substantially the same depth. The trenches are formed at the periphery of the IC to serve as guard rings.
摘要:
A linear polishing apparatus for polishing a semiconductor substrate including a novel polishing belt arrangement with at least two polishing belts forming a continuous loop. Each belt having an outside polishing surface and an inside smooth surface. The belts are spaced alongside each other sharing a common axis at each end. The belts are looped around a pair of rollers making up a driver roller at one end and a driven roller at the other end. A platen member interposes each belt and is placed between the pairs of rollers. The platen provides a polishing plane and supporting surface for the polishing belts. The polishing plane includes a plurality of holes communicating with an elongated plenum chamber underlying the plane. The chamber supplies a compressed gas to impart an upward pressure against the polishing belts. The driver rollers are coupled to separate motors to independently drive and control at least said two of the polishing belts.
摘要:
A method of fabricating an air-gap spacer of a semiconductor device, comprising the following steps. A semiconductor substrate having at least a pair of STIs defining an active region is provided. A gate electrode is formed on the substrate within the active region. The gate electrode having an underlying gate dielectric layer. A liner oxide layer is formed over the structure, covering the sidewalls of the gate dielectric layer, the gate electrode, and over the top surface of the gate electrode. A liner nitride layer is formed over the liner oxide layer. A thick oxide layer is formed over the structure. The thick oxide, liner nitride, and liner oxide layers are planarized level with the top surface of the gate electrode, and exposing the liner oxide layer at either side of the gate electrode. The planarized thick oxide layer is removed with a portion of the liner oxide layer and a portion of the gate dielectric layer under the gate electrode to form a cross-section inverted T-shaped opening on either side of the gate electrode. A gate spacer oxide layer is formed over the structure at least as thick as the gate electrode, wherein the gate spacer oxide layer partially fills the inverted T-shaped opening from the top down and wherein air gap spacers are formed proximate the bottom of the inverted T-shaped opening. The gate spacer oxide, liner nitride, and liner oxide layers are etched to form gate spacers proximate the gate electrode. The gate spacers having an underlying etched liner nitride layer and liner oxide layer.
摘要:
A method of fabricating a vertical channel transistor, comprising the following steps. A semiconductor substrate having an upper surface is provided. A high doped N-type lower epitaxial silicon layer is formed on the semiconductor substrate. A low doped P-type middle epitaxial silicon layer is formed on the lower epitaxial silicon layer. A high doped N-type upper epitaxial silicon layer is formed on the middle epitaxial silicon layer. The lower, middle, and upper epitaxial silicon layers are etched to form a epitaxial layer stack defined by isolation trenches. Oxide is formed within the isolation trenches. The oxide is etched to form a gate trench within one of the isolation trenches exposing a sidewall of the epitaxial layer stack facing the gate trench. Multi-quantum wells or a stained-layer super lattice is formed on the exposed epitaxial layer stack sidewall. A gate dielectric layer is formed on the multi-quantum wells or the stained-layer super lattice and within the gate trench. A gate conductor layer is formed on the gate dielectric layer, filling the gate trench.
摘要:
A method for a vertical transistor by selective epi deposition to form the conductive source, drain, and channel layers. The conductive source, drain, and channel layers are preferably formed by a selective epi process. Dielectric masks define the conductive layers and make areas to form vertical contacts to the conductive S/D and channel layers.
摘要:
A method for forming a multiple thickness gate oxide layer by implanting nitrogen ions in a first area of a semiconductor substrate while a second area of the semiconductor substrate is masked; implanting argon ions into the second area of the semiconductor substrate while the first area of the semiconductor substrate is masked; and thermally growing a gate oxide layer wherein, the oxide growth is retarded in the first area and enhanced in the second area. A threshold voltage implant and/or an anti-punchthrough implant can optionally be implanted into the semiconductor substrate prior to the nitrigen implant using the same implant mask as the nitrogen implant for a low voltage gate, and prior to the argon implant using the same implant mask as the argonm implant for a high voltage gate, further reducing processing steps.
摘要:
A method is described for forming gate sidewall spacers having different widths. The variation in spacer width allows for optimization of the MOSFET characteristics by changing the dimensions of the lightly doped source/drain extensions. The process is achieved using a method where the gate structure, comprising the gate electrode and gate oxide, is formed by conventional techniques upon a substrate. Lightly doped source drain extensions are implanted into the substrate not protected by the gate structure. The exposed substrate and gate structure are then covered with an insulating liner layer. This is followed by an etch stop layer deposition over the insulating liner layer. A first spacer oxide layer is then deposited over the etch stop layer. Areas where thicker spacers are desired are masked, and the unmasked spacer oxide layer is removed. The mask is then stripped away and additional spacer oxide is grown over the entire surface. The result is a thicker oxide in the areas protected by the mask during the previous etch step. The oxide is anisotropically etched and spacers are formed along the gate sidewalls. The spacers are wider in the areas with the thicker oxide. The process continues by etching the etch stop layer not protected by the spacers. The source and drain electrodes are then formed by implanting ions into the substrate not protected by the gate structure and sidewall spacers. Adjustment of the spacer width is accomplished by adjusting the total thickness of the etch stop and spacer oxide layers. Spacer width variation is controlled by changing the deposition thickness of the first spacer oxide layer.