Abstract:
A switching circuit is configured to switch on/off a current that flows through a resonance circuit constituted by a primary winding of a transformer, a capacitance element, and an inductor that are connected in series. Electric power that is induced in a secondary winding of the transformer is rectified by a rectifier circuit. A switch is connected in parallel with the capacitance element. A control unit is configured to control the switching circuit and the switch. The control unit is configured to select a first operation in which an operation frequency of the switching circuit is controlled by switching off the switch, and select a second operation in which a period during which a current flows from the switching circuit to the primary winding of the transformer is controlled by switching on the switch.
Abstract:
A charge-discharge management device includes an instruction unit, an temperature input unit and a setting unit in order to manage charge and discharge states of a storage battery for supplying and receiving electric power to and from a distribution network for supplying electric power to an electric load. The instruction unit indicates magnitude of a charge current for the storage battery. The temperature input unit obtains a battery temperature of the storage battery. The setting unit sets the magnitude of the charge current to a first standard value if the battery temperature is in a normal range. If the battery temperature is out of the normal range, the setting unit sets the charge current to be below the first standard value and more increases a difference between the charge current and the first standard value as a degree of deviation from the normal range is larger.
Abstract:
An adsorption refrigerator comprising a first adsorber containing a first adsorbent capable of adsorbing and desorbing a first adsorbent refrigerant, a second adsorber containing a second adsorbent capable of adsorbing and desorbing the first adsorbent refrigerant, a first evaporator capable of evaporating the first adsorbent refrigerant under reduced pressure to cool a first working fluid, a first condenser capable of condensing the first adsorbent refrigerant in gaseous state, a third adsorber containing a third adsorbent capable of adsorbing and desorbing a second adsorbent refrigerant, a fourth adsorber containing a fourth adsorbent capable of adsorbing and desorbing the second adsorbent refrigerant, a second evaporator capable of evaporating the second adsorbent refrigerant under reduced pressure to cool a second working fluid, a second condenser capable of condensing the second adsorbent refrigerant in gaseous state, a first heat exchanger capable of applying heat absorbed from a first heat source to a first heating medium, a second heat exchanger capable of removing and releasing heat from a second heating medium, and a heat recovery path where a third heating medium performs recovery of adsorption heat generated by adsorption-driving of the first adsorber or the second adsorber and performs heat application of regeneration-driving of the third adsorber or the fourth adsorber.
Abstract:
A hydrogen generator includes: a reformer configured to generate a hydrogen-containing gas by a reforming reaction of a material gas; a combustor configured to heat the reformer by diffusion combustion of the material gas and combustion air; a supplementary air flow rate adjuster configured to adjust the flow rate of supplementary air added to the material gas; and a controller configured to control the supplementary air flow rate adjuster such that the flow rate of a mixture gas of the material gas and the supplementary air becomes a predetermined value.
Abstract:
Electric power conversion device has first and second operation modes. First operation mode is of converting DC power from a first terminal into DC power having a desired voltage to be output to second terminal. Second operation mode is of converting DC power from the second terminal into DC power having a desired voltage to be output to first terminal. Switching section is configured to, in first operation mode, be turned on to cause short-circuiting between both ends of capacitor of rectifying circuit, and, in second operation mode, be turned off. First conversion part is configured to, in first operation mode, supply DC power-from first terminal, from first winding to second conversion part through a conversion circuit, and, in second operation mode, output to first terminal a voltage obtained by adding an output voltage of rectifying circuit to an output voltage of conversion circuit.
Abstract:
A switching circuit is configured to switch on/off a current that flows through a resonance circuit constituted by a primary winding of a transformer, a capacitance element, and an inductor that are connected in series. Electric power that is induced in a secondary winding of the transformer is rectified by a rectifier circuit. A switch is connected in parallel with the capacitance element. A control unit is configured to control the switching circuit and the switch. The control unit is configured to select a first operation in which an operation frequency of the switching circuit is controlled by switching off the switch, and select a second operation in which a period during which a current flows from the switching circuit to the primary winding of the transformer is controlled by switching on the switch.
Abstract:
Electric power conversion device has first and second operation modes. First operation mode is of converting DC power from a first terminal into DC power having a desired voltage to be output to second terminal. Second operation mode is of converting DC power from the second terminal into DC power having a desired voltage to be output to first terminal. Switching section is configured to, in first operation mode, be turned on to cause short-circuiting between both ends of capacitor of rectifying circuit, and, in second operation mode, be turned off. First conversion part is configured to, in first operation mode, supply DC power-from first terminal, from first winding to second conversion part through a conversion circuit, and, in second operation mode, output to first terminal a voltage obtained by adding an output voltage of rectifying circuit to an output voltage of conversion circuit.
Abstract:
A hydrogen generator includes: a reformer configured to generate a hydrogen-containing gas by a reforming reaction of a material gas; a combustor configured to heat the reformer by diffusion combustion of the material gas and combustion air; a supplementary air flow rate adjuster configured to adjust the flow rate of supplementary air added to the material gas; and a controller configured to control the supplementary air flow rate adjuster such that the flow rate of a mixture gas of the material gas and the supplementary air becomes a predetermined value.