Abstract:
A switching circuit is configured to switch on/off a current that flows through a resonance circuit constituted by a primary winding of a transformer, a capacitance element, and an inductor that are connected in series. Electric power that is induced in a secondary winding of the transformer is rectified by a rectifier circuit. A switch is connected in parallel with the capacitance element. A control unit is configured to control the switching circuit and the switch. The control unit is configured to select a first operation in which an operation frequency of the switching circuit is controlled by switching off the switch, and select a second operation in which a period during which a current flows from the switching circuit to the primary winding of the transformer is controlled by switching on the switch.
Abstract:
An energy planning system that proposes an appropriate energy plan for a home includes: a sensor that senses a state of an energy facility in a home; a predictor that predicts a future lifestyle of a resident of the home; and a proposer that determines information about an energy plan for the home based on a result of the sensing by the sensor and the lifestyle predicted by the predictor, and outputs the information.
Abstract:
A switching circuit is configured to switch on/off a current that flows through a resonance circuit constituted by a primary winding of a transformer, a capacitance element, and an inductor that are connected in series. Electric power that is induced in a secondary winding of the transformer is rectified by a rectifier circuit. A switch is connected in parallel with the capacitance element. A control unit is configured to control the switching circuit and the switch. The control unit is configured to select a first operation in which an operation frequency of the switching circuit is controlled by switching off the switch, and select a second operation in which a period during which a current flows from the switching circuit to the primary winding of the transformer is controlled by switching on the switch.
Abstract:
Electric power conversion device has first and second operation modes. First operation mode is of converting DC power from a first terminal into DC power having a desired voltage to be output to second terminal. Second operation mode is of converting DC power from the second terminal into DC power having a desired voltage to be output to first terminal. Switching section is configured to, in first operation mode, be turned on to cause short-circuiting between both ends of capacitor of rectifying circuit, and, in second operation mode, be turned off. First conversion part is configured to, in first operation mode, supply DC power-from first terminal, from first winding to second conversion part through a conversion circuit, and, in second operation mode, output to first terminal a voltage obtained by adding an output voltage of rectifying circuit to an output voltage of conversion circuit.
Abstract:
A charge-discharge management device includes an instruction unit, an temperature input unit and a setting unit in order to manage charge and discharge states of a storage battery for supplying and receiving electric power to and from a distribution network for supplying electric power to an electric load. The instruction unit indicates magnitude of a charge current for the storage battery. The temperature input unit obtains a battery temperature of the storage battery. The setting unit sets the magnitude of the charge current to a first standard value if the battery temperature is in a normal range. If the battery temperature is out of the normal range, the setting unit sets the charge current to be below the first standard value and more increases a difference between the charge current and the first standard value as a degree of deviation from the normal range is larger.
Abstract:
Electric power conversion device has first and second operation modes. First operation mode is of converting DC power from a first terminal into DC power having a desired voltage to be output to second terminal. Second operation mode is of converting DC power from the second terminal into DC power having a desired voltage to be output to first terminal. Switching section is configured to, in first operation mode, be turned on to cause short-circuiting between both ends of capacitor of rectifying circuit, and, in second operation mode, be turned off. First conversion part is configured to, in first operation mode, supply DC power-from first terminal, from first winding to second conversion part through a conversion circuit, and, in second operation mode, output to first terminal a voltage obtained by adding an output voltage of rectifying circuit to an output voltage of conversion circuit.