Abstract:
A scroll compressor according to the present disclosure includes a partition wall that divides a sealed vessel into a high-pressure space and a low-pressure space, a non-orbiting scroll provided in the low-pressure space, an orbiting scroll that forms a compression chamber between the orbiting scroll and the non-orbiting scroll, and a rotational shaft. The scroll compressor further includes a main bearing that supports the orbiting scroll, an elastic body that biases one of the non-orbiting scroll and the orbiting scroll so as to separate the non-orbiting scroll and the orbiting scroll from each other, and a plurality of columnar members that are fixed at one ends of the columnar members and are movable at the other ends of the columnar members, and are disposed in a circumferential direction. The non-orbiting scroll or the orbiting scroll that is biased by the elastic body is movable between the partition wall and the main bearing in an axial direction of the rotational shaft. The elastic body is disposed between the plurality of columnar members in the circumferential direction.
Abstract:
A scroll compressor of the present invention includes a partition plate 20, a fixed scroll 30, an orbiting scroll 40, a rotation-restraining member 90 and a main bearing 60. An inner wall of a fixed spiral lap 32 of the fixed scroll 30 is formed up to a location close to an ending-end of an orbiting spiral lap 42 of the orbiting scroll 40, thereby differentiating, from each other, a containment capacity of one (50A) of compression chambers and a containment capacity of the other compression chamber 50B, the fixed scroll 30 can move in an axial direction of the fixed scroll between the partition plate 20 and a main bearing 60, and high pressure is applied to a discharge space 30H formed between the partition plate 20 and the fixed scroll 30. According to this, the fixed scroll 30 can be pressed against the orbiting scroll 40.
Abstract:
A scroll compressor of the present invention includes a partition plate 20, a fixed scroll 30, an orbiting scroll 40, a rotation-restraining member 90, a main bearing 60, a bearing-side concave portion 102, a scroll-side concave portion 101 and a columnar member 100. A lower end of the columnar member 100 is inserted into the bearing-side concave portion 102, and an upper end of the columnar member is inserted into the scroll-side concave portion 101. The columnar member 100 slides with at least one of the bearing-side concave portion 102 and the scroll-side concave portion 101, thereby moving the fixed scroll 30 in an axial direction between the partition plate 20 and the main bearing 60. A high pressure is applied to a discharge space 30H, thereby pressing the fixed scroll 30 against the orbiting scroll 40.
Abstract:
A compression chamber includes the compression chamber partitioning member, an intermediate pressure chamber guides an intermediate pressure working fluid before injection to the compression chamber, and the intermediate pressure chamber and the compression chamber face each other with a compression chamber partitioning member interposed between the intermediate pressure chamber and the compression chamber. Further, the intermediate pressure chamber includes an intermediate pressure chamber inlet through which an intermediate pressure working fluid flows, an injection port inlet of an injection port through which the intermediate pressure working fluid is injected into the compression chamber, and a liquid reservoir formed at a position below the intermediate pressure chamber inlet, and the liquid reservoir is formed by the compression chamber partitioning member.
Abstract:
A scroll compressor includes a pillar-shaped member that is inserted into a scroll-side engagement section formed on a stationary scroll. A lower end-face of an engagement section between the pillar-shaped member and the scroll-side engagement section is located above a lap end-face of a stationary spiral lap.
Abstract:
A scroll compressor of the present invention includes a first discharge port 35 which is in communication with a compression chamber 50, a discharge space 30H which is in communication with the first discharge port 35, a second discharge port 21 which brings the discharge space 30H into communication with a high pressure space 11, a discharge check valve 131 capable of closing the second discharge port 21, a bypass port 36 which brings the compression chamber 50 into communication with the discharge space 30H, and a bypass check valve 121 capable of closing the bypass port 36, the fixed scroll 30 can move in an axial direction of the fixed scroll between the partition plate 20 and the main bearing 60, a high pressure is applied to the discharge space 30H and according to this, the fixed scroll 30 can be pressed against the orbiting scroll 40.
Abstract:
A scroll compressor of the present invention includes a partition plate 20, a fixed scroll 30, an orbiting scroll 40, a rotation-restraining member 90, a main bearing 60, a discharge space 30H, a ring-shaped first seal member 141 and a ring-shaped second seal member 142. A pressure in the medium pressure space 30M is set lower than that in the discharge space 30H and higher than that in the low pressure space 12. The first seal member 141 and the second seal member 142 are sandwiched by the partition plate 20 by means of a closing member 150, the fixed scroll 30 can move in an axial direction of the fixed scroll between the partition plate 20 and the main bearing 60. If a high pressure is applied to the discharge space 30H, the fixed scroll 30 can be pressed against the orbiting scroll 40.
Abstract:
Each chip in a three-dimensional circuit includes a pair of connections, a test signal generation circuit, and a test result judgment circuit. The connections are electrically connected with an adjacent chip. The test signal generation circuit outputs a test signal to one of the connections. The test result judgment circuit receives a signal from the other of the connections and, from the state of the signal, detects the conducting state of the transmission path for the signal. Before layering the chips, a conductor connects the connections to form a series connection, and the conducting state of each connection is detected from the conducting state of the series connection. After layering the chips, the test signal generation circuit in one chip outputs a test signal, and the test result judgment circuit in another chip receives the test signal, and thus the conducting state of the connections between the chips is tested.
Abstract:
The control system includes: a determiner that determines, based on browsing information on browsing using a browsing device, a target device and a browsing relation degree indicating relationship between a predetermined function of the target device and the browsing; a device information obtainer that obtains device information on a target control device that is the target device having the browsing relation degree of the browsing greater than or equal to a threshold; and a control unit that changes an operation mode for executing the predetermined function of the target control device when the device information obtained satisfies a specific condition.
Abstract:
The present invention provides a three-dimensional integrated circuit wherein generation of hot spot which makes a high temperature part as a result of intensively generated heat can be suppressed in. The integrated circuit apparatus comprises: a first circuit made of a memory circuit, a second circuit made of an arithmetic circuit, and a control circuit. The first circuit is partitioned into a plurality of circuit blocks according to the distance from the arranged position of the second circuit, and the control circuit controls the partitioned respective circuit blocks separately.