摘要:
A process for producing a starch comprises treating a feed starch that comprises amylopectin with glucanotransferase to produce a chain-extended starch, treating the chain-extended starch with a debranching enzyme to produce a starch product that comprises amylose fragments, crystallizing at least part of the starch product, heating the starch product in the presence of moisture, treating the starch product with alpha-amylase, and washing the starch product to remove at least some non-crystallized starch. The product of this process has a relatively high total dietary fiber content.
摘要:
Compositions and processed for their use as additives for reducing the sulfur content of FCC gasoline employ a support material having deposited on its surface (a) a first metal component from Group IIB of the Periodic Table and (b) a second metal component from Group III or Group IV of the Periodic Table. The additive composition is preferably made of a montmorillonite clay support containing zinc and gallium, zinc and zirconium. Alternatively, the additive composition includes support material having deposited on its surface a metal component from Group III of the Periodic Table, preferably a montmorillonite clay support containing gallium. The clay is impregnated with the metal(s) using the known incipient wetness method and the dried powdered additive composition is preferably formed into shapes suitable for use in the FCC unit.
摘要:
The catalyst exhibiting hydrogen spillover effect relates to the composition of a catalyst exhibiting hydrogen spillover effect and to a process for preparing the catalyst. The catalyst has a reduced transition base metal of Group VIB or Group VIIIB, such as cobalt, nickel, molybdenum or tungsten, supported on a high porous carrier, such as saponite, the base metal being ion-exchanged with at least one precious metal of Group VIIIB. The process includes the steps of loading the base metal onto the support, reducing the base metal, preferably with H2 at 600° C., and thereafter ion-exchanging the precious metal with the base metal. Preferred examples of the catalyst include a saponite support loaded with about 10-20 wt % cobalt and about 0.1-1 wt % precious metal. The catalyst is optimized for reactions that occur in commercial processes at about 360-400° C., such as in hydrocracking.
摘要:
The catalyst for oxidative dehydrogenation of propane to propylene includes vanadium and aluminum incorporated into the framework of a mesoporous support, viz., MCM-41, to form V—Al-MCM-41, and nickel impregnated onto the walls of the mesoporous support. Nickel loading is preferably in the range of 5 to 15% by weight of the catalyst. A process for the production of propylene from propane includes steps of placing the catalyst in a fixed bed reactor, introducing a flow of feedstock in a propane:oxygen:nitrogen ratio of about 6:6:88 by volume, maintaining the reactor at atmospheric pressure and in a temperature range of about 400 to 550° C., collecting the product, and separating propylene from the product. The process achieves propane conversion between about 6 to 22%, and a selectivity for propylene between about 22 and 70%, depending upon percent nickel content and temperature of the reaction.
摘要:
The active methanol electro-oxidation catalysts include nano-oxides of transition metals (i.e., iron, cobalt and nickel) and platinum-ruthenium alloy nano-particles. The nano-oxides of the transition metals are dispersed during synthesis of a support material, such as mesoporous carbon. The catalyst includes a support material formed from mesoporous carbon, a nano-oxide of a transition metal dispersed in the support material, and platinum-ruthenium alloy nano-particles supported on the nano-oxide of the transition metal, the platinum-ruthenium alloy nano-particles (in a 1:1 molar ratio) forming about 15 wt % of the methanol electro-oxidation catalyst, the transition metals forming about 15 wt % of the methanol electro-oxidation catalyst, and carbon and oxygen forming the balance of about 70 wt % of the methanol electro-oxidation catalyst.
摘要:
A technique transfers data between geographically dispersed entities belonging to a virtual-local-area network (VLAN). According to the technique, geographically dispersed entities communicate via software-defined virtual ports that “appear” as physical ports to the entities. Each virtual port, in turn, is associated with one or more connections wherein each connection may be associated with one or more VLANs. Data generated on a particular VLAN that is destined for a remote entity is forwarded to a virtual port which, in turn, transfers the data to the remote entity over the connection associated with the VLAN. Moreover, state is maintained at each virtual port for each connection, thereby enabling the virtual ports to support various protocols that operate with physical ports.
摘要:
The methanol electro-oxidation catalysts include nano-oxides of rare earth metals (i.e., cesium, praseodymium, neodymium and samarium) and platinum nano-particles. The nano-oxides of the rare earth metals are dispersed during synthesis of a support material, preferably formed from mesoporous carbon. The platinum nano-particles form between about 10 wt % and about 15 wt % of the methanol electro-oxidation catalyst, the rare earth metal forms between about 10 wt % and about 15 wt % of the methanol electro-oxidation catalyst, and carbon and oxygen forming the balance (between about 70 wt % and about 80 wt %) of the methanol electro-oxidation catalyst.
摘要:
The oxidative dehydrogenation of propane provides a highly selective catalyst for the oxidative dehydrogenation of propane to propylene, and a process for preparing the catalyst. The catalyst is a mixed metal oxides catalyst of the general formula MoaVbOx, where the molar ratio of molybdenum to vanadium is between 1:1 and 9:1 (a:b is between 0.5:0.5 and 0.9:0.1) and x is determined according to the oxidation state of the cations present. The catalyst is prepared by mixing the metals by sol-gel technique, heating the gel to dry the mixed oxides, further heating the dried product to induce auto-combustion, washing the product with isopropyl alcohol, and drying with a supercritical CO2 dryer. Oxidative dehydrogenation is carried out by contacting a stream of propane gas with the bulk mixed metal oxides catalyst at a temperature between 350° C. and 550° C. Propylene selectivity of 100% is reached at conversion rates between 1.9% and 4.8%.
摘要:
The methanol electro-oxidation catalysts include nano-oxides of rare earth metals (i.e., cesium, praseodymium, neodymium and samarium) and platinum nano-particles. The nano-oxides of the rare earth metals are dispersed during synthesis of a support material, preferably formed from mesoporous carbon. The platinum nano-particles form between about 10 wt % and about 15 wt % of the methanol electro-oxidation catalyst, the rare earth metal forms between about 10 wt % and about 15 wt % of the methanol electro-oxidation catalyst, and carbon and oxygen forming the balance (between about 70 wt % and about 80 wt %) of the methanol electro-oxidation catalyst.
摘要:
A method is provided for the thermo-neutral reforming of liquid hydrocarbon fuels which employs a Ni, Ce2O3, La2O3, Pt−ZrO2, Rh and Re catalyst having dual functionalities to achieve both combustion and steam reforming.