摘要:
The present invention provides, inter alia, apparatuses and methods for ionizing samples that are in gaseous phase or can be vaporized/sublimated. The samples include samples to be analyzed and mass calibrants that serve as standards. In addition, the present invention also provides calibrant formulations that release mass calibrants in a slow, controlled manner.
摘要:
The present invention provides, inter alia, apparatuses and methods for ionizing samples that are in gaseous phase or can be vaporized/sublimated. The samples include samples to be analyzed and mass calibrants that serve as standards. In addition, the present invention also provides calibrant formulations that release mass calibrants in a slow, controlled manner.
摘要:
An apparatus for ionizing an analyte sample with a mass calibrant is provided. The apparatus includes an ionization chamber defining an ionization region, a first passageway coupled to the ionization region for delivering the analyte sample to the ionization region, a second passageway leading to a mass analyzer having an orifice arranged adjacent to the ionization region to receive ions from the ionization region, a third passageway coupled to the ionization chamber at a first end and having a second end with an orifice arranged to receive gaseous neutral mass calibrant molecules, and an ionization device arranged within the ionization chamber. The ionization device generates primary ions from the analyte sample, and the primary ions ionize a portion of the gaseous neutral mass calibrant molecules received into the ionization region via the third passageway.
摘要:
In a mass spectrometer or gas chromatograph/mass spectrometer system, a conditioning gas such as, for example, hydrogen is added to condition or clean one or more components or regions of the mass spectrometer such as the ion source. The conditioning gas may be added upstream of the mass spectrometer such as, for example, into a sample inlet or a chromatographic column, or may be added directly into the mass spectrometer. The conditioning gas may be added off-line, when the mass spectrometer is not analyzing a sample, or on-line during sample analysis. When added on-line, the conditioning gas may be mixed with a carrier gas such as, for example, helium. In another embodiment, the conditioning gas also serves as the carrier gas through the column; another gas such as, for example, helium may be added to the carrier gas stream.
摘要:
A system includes a vacuum manifold for a mass spectrometer. The vacuum manifold defines an orifice. A vacuum valve is joined to the manifold at the orifice. A load-lock adapter is joined to the vacuum valve. A transfer line may be introduced to the mass spectrometer and withdrawn therefrom via the vacuum valve and load-lock adapter without substantially disturbing the operating environment of the mass spectrometer.
摘要:
The invention provides a system apparatus and methods for fragmenting various molecules. In particular, the invention may be employed for fragmenting biomolecules like peptides to determine sequence information. The invention provides a mass spectrometry system for photo-activated collision induced dissociation. The mass spectrometry system or device includes an ion source for producing ions, a photon source adjacent to the ion source for photo-activating ions produced by the ion source, an electrical element adjacent to the photon source for creating an electric field for accelerating ions produced by the ion source and photo-activated by the photon source; wherein ions are produced by the ion source, photo-activated by the photon source and accelerated into a surface to cause dissociation of the activated ions; and a detector downstream from the ion source for detecting the collision induced and dissociated ions.
摘要:
An apparatus and method for controlling the flow of fluid though a channel. A first substrate defines features comprising a first channel. At least a portion of the first channel is bounded a deformable material having a first contour in which the first channel has a first cross-sectional area and a second contour in which the first channel has a second cross-sectional area.
摘要:
In a mass spectrometer or gas chromatograph/mass spectrometer system, a conditioning gas such as, for example, hydrogen is added to condition or clean one or more components or regions of the mass spectrometer such as the ion source. The conditioning gas may be added upstream of the mass spectrometer such as, for example, into a sample inlet or a chromatographic column, or may be added directly into the mass spectrometer. The conditioning gas may be added off-line, when the mass spectrometer is not analyzing a sample, or on-line during sample analysis. When added on-line, the conditioning gas may be mixed with a carrier gas such as, for example, helium. In another embodiment, the conditioning gas also serves as the carrier gas through the column; another gas such as, for example, helium may be added to the carrier gas stream.
摘要:
In a mass spectrometer or gas chromatograph/mass spectrometer system, a conditioning gas such as, for example, hydrogen is added to condition or clean one or more components or regions of the mass spectrometer such as the ion source. The conditioning gas may be added upstream of the mass spectrometer such as, for example, into a sample inlet or a chromatographic column, or may be added directly into the mass spectrometer. The conditioning gas may be added off-line, when the mass spectrometer is not analyzing a sample, or on-line during sample analysis. When added on-line, the conditioning gas may be mixed with a carrier gas such as, for example, helium. In another embodiment, the conditioning gas also serves as the carrier gas through the column; another gas such as, for example, helium may be added to the carrier gas stream.
摘要:
Methods, systems and computer readable media for dynamically controlling a time period of ion detection by an ion detector of a mass spectrometer. A current resulting from conversion of an output of the detector is surveyed during the ion detection by the detector. The time period for the ion detection is terminated upon calculation of a statistically valid accumulation statistic, calculation indicating that satisfactory statistics cannot be achieved over the time period, relative to a predetermined statistical threshold, or elapsing of the entire time period having been preset.