摘要:
The present disclosure relates to a computer-implemented method for analyzing a product stream of a chemical reaction. The method includes withdrawing a portion of the product stream of the chemical reaction from a reactor, the portion of the product stream having a volume of less than about 200 μL. The method further includes mixing the portion of the product stream with a diluent to produce a sample and then transferring the sample to a liquid chromatography device. A measured chemical profile is then developed, via the liquid chromatography device, which can be used for process monitoring or real time decision making. In some embodiments, the method can include adjusting a reaction condition in the reactor based on differences between the measured chemical profile and a desired chemical profile.
摘要:
The present disclosure relates to an oxidizer, and related methods, for oxidizing polar modifiers in chromatographic mobile phases. The oxidizer enables the use of flame-based detection in chromatographic separations, such as carbon dioxide based chromatography, which employ polar modifiers, such as methanol. Upon exiting a chromatographic column, the mobile phase containing the polar modifier is flowed through an oxidizer that contains a catalyst to oxidize at least a portion of the polar modifier to a species that does not interfere with the function of the flame-based detector. The oxidizer allows for flame-based detection, such as flame ionization detection, in applications in which a polar modifier with a reduced form of carbon is used.
摘要:
The present invention provides a high throughput method to quantify and characterize the size and integrity of viruses and viral molecules. In one embodiment, the present invention provides a method to quantify and characterize size and integrity of Foot and Mouth Disease virus (FMDV) using chromatographic system and in-line Dynamic Light Scattering (DLS) technique. In one embodiment, the present invention further comprises a column-switching system for running multiple analyses simultaneously. The present invention also provides a method to develop and evaluate FMDV containing products for preventing Foot and Mouth Disease (FMD). In one embodiment, the methods described herein assess the stability of FMDV. In another embodiment, the methods described herein serve as in-process quality control for a manufacturing process of FMD vaccine.
摘要:
Provided is a system comprising a conduit from a gas chromatograph column to a single reactor comprising a Fe, Co, Pt, Ni, Rh, Pd and/or Ru catalyst(s), with hydrogen and oxygen feed conduits for providing hydrogen and oxygen to the reactor, and a conduit from the reactor to an FID detector. This allows one to practice a method for the detection and quantification of organic molecules from a gas chromatograph which comprises passing the effluent from a gas chromatograph column to a reactor comprising a Fe, Co, Pt, Ni, Rh, Pd and/or Ru catalyst; adding hydrogen and air/oxygen to the reactor; reacting the effluent from the gas chromatograph column in the reactor to sequentially oxidize then reduce all organic containing molecules to CH4 by heating to an elevated temperature, and passing the reactor effluent to an FID.
摘要:
It is possible to correctly determine whether a change in the pressure or flow rate is caused by normal opening and closing operations of a check valve and to monitor in real time whether an operation of a check valve is normal or abnormal in a liquid supply device. Light is introduced in the check valve and a change in the quantity of light transmitted through or reflected by the check valve, caused by the opening and closing of the valve is detected, so that the opening and closing operations of the check valve can be directly detected. The check valve is arranged in a pipe in the liquid supply device, and a change in the pressure in the pipe is monitored on the basis of a signal from a pressure sensor and a signal which represents the opening and closing of the check valve.
摘要:
A digester-evaporator for partially digesting a sample and for evaporating the solvent after partial digestion. The digester includes at least one reaction coil; a heating element arranged along a portion of the reaction coil; at least a portion of the reaction coil proximate to its output being preheated by the heating element to a degree sufficient to convert a partially digested sample into vapor; a collector spoon with carrier water for collecting sample vapor; and an evaporator portion including an evaporation chamber including a substantially vertically-oriented tube The collector spoon is arranged in the top of the substantially vertically-oriented tube, and a gas supply tube for supplying a preheated gas provided in a top of the substantially vertically-oriented tube so as to create a cyclonic gas flow into the chamber and carry the sample to a container area in a bottom portion of the chamber.
摘要:
Post-column reaction-ion chromatography (PCR-IC) analysis of drinking water samples for quantity measurements and species identification of haloacetic acid contaminants therein is provided. With the necessity to chlorinate drinking water to remove harmful bacteria and other potential toxins, haloacetic acid byproducts are generated that may harm humans after consumption as well. A reliable manner of measuring such drinking water supplies for haloacetic acids at locations far from the source and closer to dispensers is highly desirable. The PCR-IC analysis method of the invention has been found to be nearly as reliable as source measuring methods for the same purpose, but with the versatility to measure for such haloacetic acid contaminants anywhere along the drinking water supply line.
摘要:
A method of gas chromatograph mass spectrometry with a negative chemical ionization (NCI) process includes analyzing a standard substance for the NCI by deriving with a derivatization reagent a fatty acid with a multiple number of carbon atoms, measuring the standard substance for the NCI by negative chemical ionization, and obtaining a retention time for each of the number of carbon atoms. The method includes measuring, under a same condition, a standard sample of each of from one to a plurality of measurement object components by negative chemical ionization, and obtaining a respective retention time for each of the measurement object components, and obtaining a retention index for the NCI of each measurement object component using the respective retention time of the measurement object component, and the retention time of the standard substance. The index facilitates both correcting the retention time of each measurement object component, and identifying substances.
摘要:
In conducting liquid chromatographic analysis of a saccharide mixture containing monosaccharides and oligosaccharides, elution is conducted by using two kinds or more of mobile phases to separate the saccharide mixture into individual constituent saccharides followed by conversion thereof into corresponding derivatives by reaction with reagents and detection of the derivatives as contained in a detector cell. The method of the invention is characterized in that the detector cell is cleaned by washing with a cleaning solvent after completion of the detection of each of the saccharide derivatives. The invention also provides an apparatus for efficiently conducting the above-mentioned inventive method comprising an analytical column, a reactor for converting the separated constituent saccharides into the derivatives, detector cell for containing the derivative, a detector for detecting the derivative contained in the detector cell, a solvent-feed means to introduce a cell-cleaning solvent into the cell and a flow channel-switching means.
摘要:
A microchip apparatus and method provide fluidic manipulations for a variety of applications, including sample injection for microchip liquid chromatography. The microchip fabricated using standard photolithographic procedures chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis is performed in channels formed in the substrate. Injections are made by electro-osmotically pumping sample through the injection channel that crosses the separation channel, followed by a switching of the potentials to force a plug into the separation channel.