摘要:
A digital to analog converter includes a time encoder that converts an analog input signal into a asynchronous pulse sequence, a pulse asynchronous DeMUX circuit that converts the asynchronous pulse sequence into a parallel stream of pulse sequences at a relatively lower speed, a parallel pulse to asynchronous digital converter, an asynchronous digital to synchronous digital converter, a timing reference circuit to generate absolute time references, and a Digital Signal Processor. This architecture provides for analog to digital conversion based on pulse encoding with a parallel digitization scheme of the pulse encoded signal.
摘要:
A digital to analog converter includes a time encoder that converts an analog input signal into a asynchronous pulse sequence, a pulse asynchronous DeMUX circuit that converts the asynchronous pulse sequence into a parallel stream of pulse sequences at a relatively lower speed, a parallel pulse to asynchronous digital converter, an asynchronous digital to synchronous digital converter, a timing reference circuit to generate absolute time references, and a Digital Signal Processor. This architecture provides for analog to digital conversion based on pulse encoding with a parallel digitization scheme of the pulse encoded signal.
摘要:
The present invention relates to a digital communication architecture based upon the concept of time encoding. In one aspect, systems provide time-encoding-based digital communication, the systems comprising a transmitter, a communication channel, and a receiver. In another aspect, methods for digital communication comprise time encoding digital input data and then transmitting the resultant asynchronous pulse signal to a receiver that converts the asynchronous pulse signal back into digital symbols. Methods of providing a digital communication link can include (i) providing digital symbols, (ii) time encoding the digital symbols to generate asynchronous pulse signals, (iii) communicating switching times of the signals to a receiver, and (iv) digitizing in parallel and reconstructing the digital symbols. The methods and systems of the invention can utilize existing chip-scale circuit technologies and can be characterized by link capacities of 50 Gbit/sec, 100 Gbit/sec, 200 Gbit/sec, or higher.
摘要:
The present invention relates to a digital communication architecture based upon the concept of time encoding. In one aspect, systems provide time-encoding-based digital communication, the systems comprising a transmitter, a communication channel, and a receiver. In another aspect, methods for digital communication comprise time encoding digital input data and then transmitting the resultant asynchronous pulse signal to a receiver that converts the asynchronous pulse signal back into digital symbols. Methods of providing a digital communication link can include (i) providing digital symbols, (ii) time encoding the digital symbols to generate asynchronous pulse signals, (iii) communicating switching times of the signals to a receiver, and (iv) digitizing in parallel and reconstructing the digital symbols. The methods and systems of the invention can utilize existing chip-scale circuit technologies and can be characterized by link capacities of 50 Gbit/sec, 100 Gbit/sec, 200 Gbit/sec, or higher.
摘要:
An asynchronous pulse processing (APP) apparatus, an APP system and a method of signal normalization employing APP provide signal normalization. The APP apparatus includes a gain block configured to scale an input signal by a first scale value and a summation block configured to produce a composite signal by subtracting from the scaled input signal each of a normalized signal scaled by a second scale value and the normalized signal multiplied by a summation signal. The APP apparatus further includes an integrator and a time encoder configured to produce the normalized signal from the composite signal. The APP system includes a plurality of APP apparatuses as APP channels. The method of signal normalization includes generating the composite signal from the scaled input signal and integrating and time encoding the composite signal to produce the normalized signal.
摘要:
A system for making a pulse domain linear programming circuit. The inputs and the outputs to the pulse domain linear programming circuit are time encoded pulse signals. The circuit includes arrays of two types of cross-coupled time encoding elements. The first type of elements includes two integrators, adders, a hysteresis quantizer, and a 1-bit self-feedback DAC. The second type of elements includes a bias element, a leaky integrator, adders, a fixed memory-less non-linearity, a regular integrator, a hysteresis quantizer and a 1-bit self-feedback DAC. The cross-coupling signals between the two types of elements are pulse time-encoded signals. All of the cross-coupling weights are set via 1-bit DACs having variable gains. The cross-coupling weights are used to set a constraint equation of a pulse domain linear programming problem. Methods to make the foregoing circuit are also described.
摘要:
A neural network has an array of interconnected processors, at least a first processor in the array operating in a pulse domain and at least a second processor in the array operating in a spike domain, and each said processor having: first inputs selectively coupled to other processors in the array of interconnected processors, each first input having an associated VCCS (a 1 bit DAC) coupled to a summing node, second inputs selectively coupled to inputs of the neural network, the second inputs having current generators associated therewith coupled to said summing node, a filter/integrator for generating an analog signal corresponding to current arriving at the summing node, and for processors operating in the pulse domain, an analog-to-pulse converter for converting an analog signal derived either directly from the filter/integrator or via a non-linear element, to the pulse domain, and providing the converted analog signal as an unquantized pulse domain signal at an output of each processor operating in the pulse domain and for processors operating in the spike domain, an analog-to-spike converter for converting an analog signal derived either directly from the filter/integrator or via a non-linear element, to the spike domain, and providing the converted analog signal as an unquantized spike domain signal at an output of each processor operating in the spike domain; wherein the array of interconnected processors are selectively interconnected with unquantized pulse domain and spike domain signals.
摘要:
A hadamard gate includes two strongly cross-coupled limit cycle oscillators. Each limit cycle oscillator includes an amplifier, a summing node, an integrator, a hysteresis quantizer, a self-feedback 1-bit DAC (Digital-to-Analog Converter) and a cross-feedback 1 bit DAC. Each oscillator output drives its own self-feedback DAC and the cross-feedback DAC of the other oscillator.
摘要:
The disclosed invention provides apparatus and methods that can convert frequencies of time-encoded signals. In one aspect, a down-converter circuit includes low-pass filters, a switch, a time encoder, and an output low-pass filter. In another aspect, an up-converter circuit includes an analog or digital input time encoder, low-pass filters, a switch, an output time encoder, and a time-encoded band-pass filter. In yet another aspect, a complete receiver system is provided. The receiver system can operate effectively with signals in the radio frequency range.
摘要:
Methods, circuits, and systems for time encoder-based unmixing of hyperspectral imaging data are disclosed. A method of unmixing hyperspectral imaging data includes receiving mixed image data of one or more pixels. The mixed image data is generated by an imaging device that captures hyperspectral data. The mixed image data includes sensed spectral band intensities of materials in an area represented by a particular pixel. The mixed image data is converted from first analog domain signals into pulse domain signals. A solution to a mixing equation in the pulse domain is generated to identify abundances of one or more of the materials based on the sensed spectral band intensities. The sensed spectral band intensities are compared to reference spectral band intensities of a set of considered materials. The solution is converted from a pulse domain into an analog domain as second analog domain signals.