摘要:
An edge termination structure is created by forming trench structures (14) near a PN junction. The presence of the trench structures (14) extends a depletion region (13) between a doped region (12) and a body of semiconductor material or a semiconductor substrate (11) of the opposite conductivity type away from the doped region (12). This in turn forces junction breakdown to occur in the semiconductor bulk, leading to enhancement of the breakdown voltage of a semiconductor device (10). A surface of the trench structures (14) is covered with a conductive layer (16) which keeps the surface of the trench structures (14) at an equal voltage potential. This creates an equipotential surface across each of the trench structures (14) and forces the depletion region to extend laterally along the surface of semiconductor substrate (11). The conductive layers (16) are electrically isolated from an electrical contact (17) which contacts the doped region (12) and from the conductive layers (16) of neighboring trench structures (14).
摘要:
A semiconductor component includes a semiconductor layer (110) having a trench (326). The trench has first and second sides. A portion (713) of the semiconductor layer has a conductivity type and a charge density. The semiconductor component also includes a control electrode (540, 1240) in the trench. The semiconductor component further includes a channel region (120) in the semiconductor layer and adjacent to the trench. The semiconductor component still further includes a region (755) in the semiconductor layer. The region has a conductivity type different from that of the portion of the semiconductor layer. The region also has a charge density balancing the charge density of the portion of the semiconductor layer.
摘要:
A semiconductor component includes a semiconductor layer (110) having a trench (326). The trench has first and second sides. A portion (713) of the semiconductor layer has a conductivity type and a charge density. The semiconductor component also includes a control electrode (540, 1240) in the trench. The semiconductor component further includes a channel region (120) in the semiconductor layer and adjacent to the trench. The semiconductor component still further includes a region (755) in the semiconductor layer. The region has a conductivity type different from that of the portion of the semiconductor layer. The region also has a charge density balancing the charge density of the portion of the semiconductor layer.
摘要:
A semiconductor component includes a semiconductor layer (110) having a trench (326). The trench has first and second sides. A portion (713) of the semiconductor layer has a conductivity type and a charge density. The semiconductor component also includes a control electrode (540, 1240) in the trench. The semiconductor component further includes a channel region (120) in the semiconductor layer and adjacent to the trench. The semiconductor component still further includes a region (755) in the semiconductor layer. The region has a conductivity type different from that of the portion of the semiconductor layer. The region also has a charge density balancing the charge density of the portion of the semiconductor layer.
摘要:
A semiconductor component includes a semiconductor layer (110) having a trench (326). The trench has first and second sides. A portion (713) of the semiconductor layer has a conductivity type and a charge density. The semiconductor component also includes a control electrode (540, 1240) in the trench. The semiconductor component further includes a channel region (120) in the semiconductor layer and adjacent to the trench. The semiconductor component still further includes a region (755) in the semiconductor layer. The region has a conductivity type different from that of the portion of the semiconductor layer. The region also has a charge density balancing the charge density of the portion of the semiconductor layer.
摘要:
A semiconductor structure (10) uses a clamp (16) disposed at an edge (27) of a dielectric structure (14) in a semiconductor device. The clamp substantially reduces the separation or peeling of the dielectric structure or layer away from the underlying semiconductor material (20,24). The clamp also provides the benefit of protecting the interface between the dielectric layer and the underlying semiconductor material from chemical or moisture attack, either during later processing or after final manufacture. Such chemical or moisture attack and internal film stress are factors leading to separation of the dielectric film from the underlying semiconductor material. The clamp is useful, for example, in preventing separation of silicon nitride or oxide passivation from gallium arsenide substrates in power rectifier diodes.
摘要:
In one embodiment, an ESD device is configured to include a zener diode and a P-N diode and to have a conductor that provides a current path between the zener diode and the P-N diode.
摘要:
In one embodiment, a two terminal multi-channel ESD device is configured to include a zener diode and a plurality of P-N diodes. In another embodiment, the ESD devices has an asymmetrical characteristic.
摘要:
In one embodiment, the ESD device uses highly doped P and N regions deep within the ESD device to form a zener diode that has a controlled breakdown voltage.
摘要:
In one embodiment, a two terminal multi-channel ESD device is configured to include a zener diode and a plurality of P-N diodes. In another embodiment, the ESD devices has an asymmetrical characteristic.