Abstract:
Ethylbenzene is produced by the alkylation of benzene with ethylene in the presence of an alkylation catalyst having a particular structure defined by its X-ray diffraction pattern. A preferred catalyst is the zeolite MCM-22. The process is typically carried out at a temperature of 300.degree. to 1000.degree. F. but the catalyst provides sufficient activity for the reaction to be carried out at temperatures below 700.degree. F. Liquid phase operation is preferred, giving a lower yield of polyethylated products. The use of the selected catalyst also results in a reduction of the xylene impurity level to values below 500 ppm in the product.
Abstract:
Layered chalcogenide materials of high thermal stability and surface area which contain interspathic polymeric chalcogenides such as polymeric silica are prepared by ion exchanging a layered metal oxide, such as layered titanium oxide, with organic cation, to spread the layers apart. A compound such as tetraethylorthosilicate, capable of forming a polymeric oxide, is thereafter introduced between the layers. The resulting product is treated to form polymeric oxide, e.g. by hydrolysis, to produce the layered oxide material. The resulting product may be employed as catalyst material in the conversion of organic compounds.
Abstract:
A process and catalyst are disclosed for selectively oxidizing alkylaromatics, e.g., o-xylene, to oxygenated aromatics, e.g., phthalic anhydride. The catalyst of the process comprises a layered titanate which contains interspathic polymeric silica and a heavy metal element, e.g., vanadium.
Abstract:
A process and catalyst are disclosed for selectively oxidizing alkylaromatics, e.g., o-xylene, to oxygenated aromatics, e.g., phthalic anhydride. The catalyst of the process comprises a layered titanate which contains interspathic polymeric silica and a heavy metal element, e.g., vanadium.
Abstract:
Layered silicate materials of high thermal stability and surface area which contain interspathic oxides such as silica as prepared by treating a layered silicate, with organic cation, to spread the layers apart. A compound such as tetraethylorthosilicate, capable of forming said oxide, is thereafter introduced between the layers. The resulting product is treated to form the oxide, e.g. by hydrolysis, to produce the layered silicate material. The resulting product may be employed as a catalyst material in the conversion of hydrocarbons.
Abstract:
A method is provided for converting feedstock comprising paraffins by selective oxidative coupling to product comprising higher hydrocarbons including dimers of said feedstock paraffins which comprises contacting said feedstock with a catalyst composition comprising a thermally stable layered metal chalcogenide having adjacent layers separated by chalcogenide pillars, and an alkali metal.
Abstract:
The present invention is directed to lubricating oils exhibiting improved resistance to oxidation and deposit/sludge formation comprising a lubricant base oil and catalytic antioxidants comprising an effective amount of a) one or more polymetal organometallic compound; and, b) effective amounts of one or more substituted N,N′-diaryl-o-phenylenediamine compounds or c) one or more hindered phenol compounds or both, to a method for improving the antioxidancy and the resistance to deposit/sludge formation of formulated lubricating oil compositions by the addition thereto of an effective amount of the aforementioned catalytic antioxidants, and to an additive concentrate containing the aforementioned catalytic antioxidants.
Abstract:
The invention comprises lubricating compositions and hydraulic fluids containing N,N′-diaryl-o-phenylenediamine compounds that impart good levels of oxidation inhibition in the lubricants and hydraulic fluids. The invention further comprises a method of making N,N′-diaryl-o-phenylenediamine compounds.
Abstract:
There is provided a process for hydroisomerizing petroleum or synthetic paraffin wax with a particular catalyst. The catalyst comprises a hydrogenating component and a layered titanate containing an interspathic polymeric oxide such as silica. The hydrogenating component may be a Group VIII metal such as Pt.
Abstract:
A catalyst is provided which is capable of hydrotreating residual oil. This catalyst comprises a layered metal oxide containing an interspathic polymeric oxide having a d-spacing of at least about 10 angstroms. The layered metal oxide may be a titanate or a silicate such as magadiite or kenyaite. The catalyst further comprises a hydrogenation component such as a Cr, Mo, W, Fe, Co, Ni, Pd or Pt.