Abstract:
Techniques to support multihop relay in a wireless communication system are described. In an aspect, a relay station receives data and a first pilot from an upstream station, e.g., a base station or another relay station. The relay station derives a channel estimate based on the first pilot and performs detection for the data based on the channel estimate. The relay station resends the data and sends a second pilot to a downstream station, e.g., a subscriber station or another relay station. Each pilot may be sent in accordance with a pilot format selected for that pilot. The first and second pilots may be sent using the same or different pilot formats. The relay station may receive channel information from the second station and may forward the channel information to the first station and/or select a rate for data transmission to the second station based on the channel information.
Abstract:
A user equipment (UE) may manage coexistence between multiple radio access technologies (RATs) utilized by the UE to allow a first RAT to be active during times when communications of a second RAT of the UE are inactive. In some instances, the UE may indicate discontinuous reception (DRX) operation of the UE to allow for time-division multiplexed (TDM) operation between the first RAT and the second RAT. The UE may set a hybrid automatic repeat request (HARQ) configuration to allow for a HARQ retransmission of a packet of the first RAT, originally received in a first DRX cycle, during a second DRX cycle.
Abstract:
Optimizing multiflow performance and priority across UEs and networks including receive antenna selection at the UEs, CSI measurement and reporting, and scheduling for multiflow operation. The techniques may evaluate channel conditions for a UE for multiple access points and different combinations of antennas and determine how the UE should feedback CSI for transmissions from the multiple access points. The disclosed techniques also include techniques for scheduling transmissions from the multiple access points using the CSI information to optimize multiflow performance and priority across UEs and networks. Various scheduling modes use feedback from UEs including the maximum supported rates for each link and/or rates based on the maximum sum capacity of the links used concurrently. The scheduler may maintain separate priority lists for each access point or a single priority list across both access points. The techniques may be used for multiflow operation using LTE and WLAN links.
Abstract:
Various embodiments enable a multi-active mobile communication device to mitigate (manage) interference by a frequency band used by a first subscription with the frequency band used by a second subscription. The device processor may generate modified power measurements for one or more frequency bands of a first subscription and use the modified power measurement(s) to cause the first subscription to switch from the frequency band that interferes with the frequency band of the second subscription. The modified power measurement may be a decreased power measurement of the first frequency band and/or an increased power measurement of a second frequency band that does not interfere with the frequency band of the second subscription. As a result, various embodiments may mitigate or otherwise manage the impact of coexistence interference between the first and second subscriptions of a multi-active mobile communication device without limiting capabilities of the device or changes to the network.
Abstract:
A method for wireless communications includes determining a time division duplex (TDD) configuration of a non-serving network. The method also includes detecting interference from the non-serving network based at least in part on the TDD configuration of the non-serving network. The method further includes signaling an eNodeB of the interference based at least in part on the detecting.
Abstract:
A method of wireless communication includes adjusting a channel quality indicator (CQI) to compensate for coexistence interference experienced between communication resources (such as an LTE radio and a Bluetooth radio). The CQI may be set to zero, falsely indicating to a serving enhanced NodeB that a UE is out of range, thereby creating a gap in LTE operation that may be used by an alternate radio access technology. To compensate for fluctuating interference, the CQI may be adjusted to incorporate average coexistence interference over a period of time. Alternatively, the CQI at a time may incorporate coexistence interference regardless of whether interference is experienced at that specific time. A CQI value may also be boosted to compensate for a CQI backoff. CQI may be adjusted to avoid a spiral of death effect.
Abstract:
Briefly, in accordance with one embodiment, a method of transmitting signals is provided. Signal waveforms are transmitted from at least two respective sectors. The at least two respective sectors are from at least two different sets of a superset of sectors. The transmitted signal waveforms include signal waveforms at least nearly mutually orthogonal at least along a particular signal dimension. An advantage of such an embodiment, for example, is reduced signal interference.
Abstract:
A user equipment (UE) may mitigate coexistence issues in multi-radio devices, where significant in-device coexistence problems can. The UE determines at least one potential virtual gap pattern configuration for a first radio access technology (RAT). The UE also selects one of the at least one potential gap pattern configuration based at least in part on protecting subframes which are used by the first RAT to perform clean signal reference measurements and/or based at least in part on performance of the second RAT. Further, the UE quiets transmit activities of a second RAT during protected subframes of the first RAT in the determined potential virtual gap pattern configuration.
Abstract:
A user equipment (UE) may manage coexistence between multiple radio access technologies (RATs) utilized by the UE to allow a first RAT to be active during times when communications of a second RAT of the UE are inactive. In some instances, the UE may indicate discontinuous reception (DRX) operation of the UE to allow for time-division multiplexed (TDM) operation between the first RAT and the second RAT. The UE may set a hybrid automatic repeat request (HARQ) configuration to allow for a HARQ retransmission of a packet of the first RAT, originally received in a first DRX cycle, during a second DRX cycle.
Abstract:
Optimizing multiflow performance and priority across UEs and networks including receive antenna selection at the UEs, CSI measurement and reporting, and scheduling for multiflow operation. The techniques may evaluate channel conditions for a UE for multiple access points and different combinations of antennas and determine how the UE should feedback CSI for transmissions from the multiple access points. The disclosed techniques also include techniques for scheduling transmissions from the multiple access points using the CSI information to optimize multiflow performance and priority across UEs and networks. Various scheduling modes use feedback from UEs including the maximum supported rates for each link and/or rates based on the maximum sum capacity of the links used concurrently. The scheduler may maintain separate priority lists for each access point or a single priority list across both access points. The techniques may be used for multiflow operation using LTE and WLAN links.