Abstract:
Certain aspects are directed to an amplifier. The amplifier generally includes a first transistor having a gate coupled to an input node of the amplifier, a source degeneration circuit, and a second transistor coupled between the source degeneration circuit and a source of the first transistor, a gate of the second transistor being configured to receive a gain control signal from a controller.
Abstract:
A clock recovery circuit includes a frequency tracking loop including a first charge pump, and a phase tracking loop including a second charge pump. A voltage-controlled oscillator responds to the frequency tracking loop in a first operating mode and to the phase tracking loop in a second operating mode. A lock detector outputs an activation signal that indicates whether the clock recovery circuit has acquired frequency lock. A loop filter coupled to an input of the voltage-controlled oscillator includes a switchable resistor and a programmable delay element responsive to the activation signal. The first charge pump is disabled when the activation signal indicates frequency lock has been acquired, and disabled when the activation signal indicates frequency lock has not been acquired. The switchable resistor is bypassed when an output of the programmable delay element is in the first signaling state.
Abstract:
In certain aspects, a regenerative stage of a sense amplifier includes a first inverter having an input and an output, and a second inverter having an input and an output. The regenerative stage also includes a third inverter having an input, an output coupled to the input of the second inverter, a first supply terminal coupled to a supply rail, and a second supply terminal coupled to the output of the first inverter. The regenerative stage further includes a fourth inverter having an input, an output coupled to the input of the first inverter, a first supply terminal coupled to the supply rail, and a second supply terminal coupled to the output of the second inverter.
Abstract:
A voltage controlled oscillator (VCO), including: at least one second upper voltage rail; at least one second lower voltage rail; a ring of N cascaded inverters, wherein the set of N cascaded inverters are coupled between the at least one second upper voltage rail and the at least one second lower voltage rail; at least one first frequency band select circuit coupled between first upper voltage rail and the at least one second upper voltage rail; at least one second frequency band select circuit coupled between the at least one second lower voltage rail and first lower voltage rail; at least one first VCO frequency control circuit coupled between the first upper voltage rail and the at least one second upper voltage rail; and at least one second VCO frequency control circuit coupled between the at least one second lower voltage rail and the first lower voltage rail.
Abstract:
Techniques for converting a signal from a small-signal format into a rail-to-rail format are described herein. In one embodiment, a receiver comprises a voltage-level shifter configured to shift a common-mode voltage of a differential signal to obtain a level-shifted differential signal, an amplifier configured to amplify the level-shifted differential signal into an amplified differential signal, and a driver stage configured to convert the amplified differential signal into a rail-to-rail signal. The receiver also comprises a common-mode feedback circuit configured to generate a feedback voltage that is proportional to an output common-mode voltage of the amplifier, and to generate a bias voltage for input to the amplifier based on a difference between the feedback voltage and a reference voltage, wherein the output common-mode voltage of the amplifier depends on the bias voltage.
Abstract:
An amplifier has a first amplifying circuit configured to receive a voltage input and to output an amplified current, a second amplifying circuit configured to receive the amplified current and to output an amplified voltage, the second amplifying circuit comprising a pair of feedback resistive elements, each feedback resistive element being coupled to a gate and drain of a corresponding transistor in a pair of output transistors in the second amplifying circuit, and a feedback circuit configured to provide a negative feedback loop between an input and an output of the pair of output transistors, the feedback circuit including a first transconductance amplification circuit and a first equalizing circuit.
Abstract:
In one embodiment, a receiver comprises a latch configured to receive a data signal and to latch symbols of the received data signal, and a decision feedback equalizer. The decision feedback equalizer comprises a first feedback capacitor having first and second terminals, the first terminal being coupled to a first internal node of the latch. The decision feedback equalizer also comprises a first plurality of switches configured to alternatively couple the second terminal of the first feedback capacitor to a first feedback signal and a ground, the first feedback signal having a first voltage that is a function of a bit decision corresponding to a first previous symbol in the data signal preceding a current symbol in the data signal.
Abstract:
In one embodiment, a receiver comprises a latch configured to receive a data signal and to latch symbols of the received data signal, and a decision feedback equalizer. The decision feedback equalizer comprises a first feedback capacitor having first and second terminals, the first terminal being coupled to a first internal node of the latch. The decision feedback equalizer also comprises a first plurality of switches configured to alternatively couple the second terminal of the first feedback capacitor to a first feedback signal and a ground, the first feedback signal having a first voltage that is a function of a bit decision corresponding to a first previous symbol in the data signal preceding a current symbol in the data signal.