Abstract:
In a semiconductor device, a sine wave signal is input to a first input part and a cosine wave signal is input to a second input part. A multiplexer alternately selects one of the sine wave signal and the cosine wave signal. An analog to digital converter converts the output signal of the multiplexer into a digital value. A switching circuit is coupled between at least one of the first and second input parts and the multiplexer. The switching circuit is configured to be able to invert the input sine wave signal or the input cosine wave signal, in order to reduce the angle detection error due to the non-linearity error of the A/D converter.
Abstract:
During a period of calibration of the ADC, the effect of unexpected external noise can be excluded.Provided is an analog to digital convertor including: an ADC that converts an analog value into a digital value; and an averaging circuit that calculates a correction value by a calibration operation. The converted value is corrected and output using the correction value being held in a normal operation. The analog to digital convertor is configured as follows. In the calibration operation, an elemental correction value on the basis of a converted value by the ADC corresponding to a predetermined analog value is supplied to the averaging circuit. The averaging circuit calculates the average value of the remaining elemental correction values obtained by removing the maximum value and the minimum value from the elemental correction values supplied a plurality of times, and calculates the correction value on the basis of the average value.
Abstract:
An analog to digital (AD) converter includes an AD conversion circuit, and a calibration circuit that calibrates an output value of the AD conversion circuit. The calibration circuit includes a right-shift circuit that shifts an accumulated value of values obtained by removing a deviated value from a plurality of output values of the AD conversion circuit. The calibration circuit calibrates the output value of the AD conversion circuit based on the shifted value.
Abstract:
According to one embodiment, a semiconductor device includes external terminals supplied with the pair of voltage signals based on a detection result of a resolver through first and second input resistances, respectively, an operation amplifier configured to amplify a potential difference between the pair of the voltage signals supplied to the external terminals, a feedback resistance disposed between an output terminal of the operation amplifier and one of two input terminals thereof, switches disposed between the two input terminals of the operation amplifier and the external terminals, respectively, and a short-circuit failure detection circuit configured to detect whether or not a short-circuit failure has occurred in the resolver based on a voltage level of each of the external terminals in a state where the switches are in an off-state.
Abstract:
According to one embodiment, a semiconductor device includes external terminals supplied with the pair of voltage signals based on a detection result of a resolver through first and second input resistances, respectively, an operation amplifier configured to amplify a potential difference between the pair of the voltage signals supplied to the external terminals, a feedback resistance disposed between an output terminal of the operation amplifier and one of two input terminals thereof, switches disposed between the two input terminals of the operation amplifier and the external terminals, respectively, and a short-circuit failure detection circuit configured to detect whether or not a short-circuit failure has occurred in the resolver based on a voltage level of each of the external terminals in a state where the switches are in an off-state.
Abstract:
A signal processing circuit includes a chopper amplifier that has a differential amplifier circuit that amplifies differential input signals Vsp(t) and Vsm(t), and an adder circuit that generates an addition signal Vfil(t) by addition of the chopper output signal Vsub(t) that the chopper amplifier generates. Differential signals inputted into the differential amplifier circuit are interchanged for every first phase period and second phase period, and the adder circuit generates the addition signal by addition of the chopper output signal in the first phase period and in the second phase period.
Abstract:
A signal processing circuit includes a chopper amplifier that has a differential amplifier circuit that amplifies differential input signals Vsp(t) and Vsm(t), and an adder circuit that generates an addition signal Vfil(t) by addition of the chopper output signal Vsub(t) that the chopper amplifier generates. Differential signals inputted into the differential amplifier circuit are interchanged for every first phase period and second phase period, and the adder circuit generates the addition signal by addition of the chopper output signal in the first phase period and in the second phase period.
Abstract:
An analog to digital (AD) converter includes an AD conversion circuit, and a calibration circuit that calibrates an output value of the AD conversion circuit. The calibration circuit includes a right-shift circuit that shifts an accumulated value of values obtained by removing a deviated value from a plurality of output values of the AD conversion circuit. The calibration circuit calibrates the output value of the AD conversion circuit based on the shifted value.
Abstract:
In a semiconductor device, a sine wave signal is input to a first input part and a cosine wave signal is input to a second input part. A multiplexer alternately selects one of the sine wave signal and the cosine wave signal. An analog to digital converter converts the output signal of the multiplexer into a digital value. A switching circuit is coupled between at least one of the first and second input parts and the multiplexer. The switching circuit is configured to be able to invert the input sine wave signal or the input cosine wave signal, in order to reduce the angle detection error due to the non-linearity error of the A/D converter.
Abstract:
An analog-to-digital (AD) convertor includes: an AD conversion circuit; and a correction circuit that corrects an output value of the AD conversion circuit based on a correction value, wherein the correction circuit generates a plurality of elemental correction values based on a plurality of output values which are converted values of a plurality of analog values by the AD conversion circuit, wherein the correction value is determined by an average value of remaining values obtained by removing a deviated value from the plurality of elemental correction values.