Abstract:
In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p′-type polysilicon film with a high impurity concentration deposited thereon.
Abstract:
In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p|-type polysilicon film with a high impurity concentration deposited thereon.
Abstract:
Disclosed is a semiconductor device including a first MISFET of an n channel type and a second MISFET of a p channel type, each of the MISFETs being configured with a gate insulating film featuring a silicon oxide film or a silicon oxynitride film and a gate electrode including a conductive silicon film positioned on the gate insulating film. Metal elements such as Hf are introduced near the interface between the gate electrode and the gate insulating film in both the first and second MISFETs such that metal atoms with a surface density of 1×1013 to 5×1014 atoms/cm2 are contained near the interface and each of the first and second MISFETs having a channel region containing an impurity the concentration of which is equal to or lower than 1.2×1018/cm3.
Abstract:
In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p+-type polysilicon film with a high impurity concentration deposited thereon.