Abstract:
The present disclosure provides a zeolite-based compound having a high crystallinity, a method for producing the zeolite-based compound, and a method for producing methyl acetate using the zeolite-based compound. The zeolite-based compound includes a zeolite-based core; and a surface-portion formed on at least a portion of a surface of the zeolite-based core and made of ferrierite.
Abstract:
Disclosed are a catalyst for carbonylation of dimethyl ether that has high catalyst activity and can be regenerated using a fluidized bed reactor, and a method for preparing the same. The catalyst for carbonylation of dimethyl ether includes a support having a first density; and ferrierite zeolite catalyst particles bound to a surface of the support via a polymer binder and having a second density smaller than the first density.
Abstract:
Disclosed are a tandem catalyst for synthesizing methyl acetate from carbon dioxide, a method for preparing the same, and a method for preparing methyl acetate using the same. The tandem catalyst of the present invention includes a first catalyst having a core-shell structure including a composite metal oxide core and a silica shell surrounding a surface of the composite metal oxide core, and a second catalyst including nano-ferrierite (N-FER) zeolite.
Abstract:
This invention relates to a catalyst for use in the preparation of acetic acid through a methanol carbonylation reaction using carbon monoxide, and particularly to a heterogeneous catalyst represented by Rh/C3N4 configured such that a complex of a rhodium compound and 3-benzoylpyridine is immobilized on a carbon nitride support.
Abstract:
Disclosed are a tandem catalyst for synthesizing methyl acetate from carbon dioxide, a method for preparing the same, and a method for preparing methyl acetate using the same. The tandem catalyst of the present invention includes a first catalyst having a core-shell structure including a composite metal oxide core and a silica shell surrounding a surface of the composite metal oxide core, and a second catalyst including nano-ferrierite (N-FER) zeolite.
Abstract:
The present disclosure relates to a ternary catalyst coated with a metal oxide, the ternary catalyst including: a ternary catalyst core including a hydrotalcite support and metal particles dispersed on the support; and a metal oxide shell formed on the ternary catalyst core.
Abstract:
A method of preparing a catalyst for synthesizing dimethyl ether from synthetic gas includes preparing a mesoporous ferrierite zeolite (FER), and co-precipitating a precursor of a mesoporous ferrierite zeolite and a Cu—Zn—Al-based oxide (CZA) to obtain a hybrid CZA/mesoFER catalyst.
Abstract:
The present invention relates to a mesoporous cobalt-metal oxide catalyst for the Fischer-Tropsch synthesis and a method of preparing the same. The mesoporous cobalt-metal oxide catalyst for the Fischer-Tropsch synthesis of the present invention can very stably maintain the mesoporous structure even under a H2-rich high-temperature reduction condition and under a reaction condition of the low-temperature Fischer-Tropsch synthesis, easily transport reactants to the active site of the catalyst due to structural stability, and facilitate the release of heavier hydrocarbon products after production thereof. Additionally, unlike the conventional cobalt-based catalysts which are prepared by adding various co-catalysts for the purpose of improving reducibility, activity, selectivity and increasing thermal stability, etc., the mesoporous cobalt-metal oxide catalyst for the Fischer-Tropsch synthesis can constantly maintain conversion and selectivity at high levels without further requiring co-catalysts and thus it can be very effectively used for the Fischer-Tropsch synthesis.