Abstract:
A porosity gradient fibrous preform includes a first fabric-resin layer having a first plurality of fibers and a first resin and a second fabric-resin layer having a second plurality of fibers and a second resin. The second fabric-resin layer is positioned further outward from the center of the porosity gradient fibrous preform than the first fabric-resin layer. In response to the porosity gradient fibrous preform being heated to a curing temperature, the first resin and/or the second resin is configured to separate into a fusible resin and a plurality of fugitive pore formers. Accordingly, a volume of the fugitive pore formers sequentially increases from a center of the porosity gradient fibrous preform toward an outer surface of the porosity gradient fibrous preform.
Abstract:
A porosity gradient fibrous preform includes a plurality of fabric-resin layers and a plurality of pore formers. Each fabric-resin layer includes a plurality of fibers and a resin. A volume of the plurality of pore formers sequentially increases from a center of the porosity gradient fibrous preform toward an outer surface of the porosity gradient fibrous preform. The pore formers can be pyrolyzed from the preform to create paths through the porosity gradient fibrous preform for infiltration of a fluid.
Abstract:
A commingled fiber preform is provided. The commingled fiber preform includes at least one first fabric layer and a second fabric layer. The second fabric layer is positioned on top of the at least one first fabric layer. The second fabric layer is joined to the at least one first fabric layer via through thickness reinforcement (TTR) using a commingled thread. A transport depth of the TTR penetrates completely through a thickness of the second fabric layer and an entirety of the at least one first fabric layer. The commingled thread comprises carbon fibers commingled with fugitive fibers. The fugitive fibers are pyrolyzed from the commingled fiber preform to create a path through the thickness for infiltration of fluids.
Abstract:
A manufacturing method is disclosed herein. The method includes arranging a preform with a plurality of clamping assemblies, the plurality of clamping assemblies disposed along ends of the preform; and forming the preform into a shaped body, the forming including incrementally tensioning the preform around a surface of an inner mold line using the plurality of clamping assemblies; and drawing the preform into a set of forming beads of the inner mold line.
Abstract:
A manufacturing method is provided. The manufacturing method applies a bonding adhesive to at least one of the first surface of the first composite preform component or the first surface of the second composite preform component, and joins the first surface of the first composite preform component to the first surface of the second composite preform component.
Abstract:
A commingled fiber preform is provided. The commingled fiber preform includes a plurality of first fabric layers and a second fabric layer. The second fabric layer is positioned on top of the plurality of first fabric layers. The second fabric layer is joined to the plurality of first fabric layers via through thickness reinforcement (TTR) using a commingled thread. A transport depth of the TTR penetrates completely through a thickness of the second fabric layer and partially through a thickness of the plurality of first fabric layers. The commingled thread comprises carbon fibers commingled with fugitive fibers. The fugitive fibers are pyrolyzed from the commingled fiber preform to create a path through the thickness for infiltration of fluids.
Abstract:
Systems and methods for detecting damage in composite components are disclosed. A first attachment feature and a second attachment feature may be coupled to a composite component. A transmitting device may be coupled to the first attachment feature. A receiving device may be coupled to the second attachment feature. A signal may be transmitted from the transmitting device, through the first attachment feature, through the composite component, and through the second attachment feature to the receiving device. The signal may be analyzed to detect damage in the composite component.
Abstract:
A preform is provided. The preform includes first fabric layers that include a first set of commingled fibers and a second set of commingled fibers. The preform includes a second fabric layer positioned between the first fabric layers. The second fabric layer includes a third set of commingled fibers and a fourth set of commingled fibers. The first set of commingled fibers includes a lower percentage of the at least one of first carbon fibers or first fusible fibers than the third set of commingled fibers, The first set of commingled fibers include a higher percentage of first fugitive fibers than the third set of commingled fibers. The first fugitive fibers and the third fugitive fibers are pyrolyzed from the first fabric layers and the second fabric layer.
Abstract:
A composite structure formed of a fiber reinforced composite material may include a plurality of fiber layers and a carbon matrix surrounding the plurality of fiber layers. A first fiber layer of the plurality of fiber layers may include a carbon fiber tow. A second fiber layer of the plurality of fiber layers may include a non-carbon fiber tow. The coefficient of thermal expansion of the non-carbon fiber tow is greater than the coefficient of thermal expansion of the carbon fiber tow.
Abstract:
A composite laminate includes a carbon nanomaterial or a functionalized carbon nanomaterial, combined with a hindered amine light stabilizer; a support veil; and a composite layer comprising one or more layers of a reinforcement.