摘要:
The present invention provides, among other things, methods, reagents, and systems for the treatment, detection, analysis, and/or characterization of influenza infections.
摘要:
The present invention provides, among other things, methods, reagents, and systems for the treatment, detection, analysis, and/or characterization of influenza infections.
摘要:
The present invention provides a system for analyzing interactions between glycans and interaction partners that bind to them. The present invention also provides HA polypeptides that bind to umbrella-topology glycans, and reagents and methods relating thereto.
摘要:
The present invention provides a system for analyzing interactions between glycans and interaction partners that bind to them. The present invention also provides HA polypeptides that bind to umbrella-topology glycans, and reagents and methods relating thereto.
摘要:
The present invention provides a system for analyzing interactions between glycans and interaction partners that bind to them. The present invention also provides HA polypeptides that bind to umbrella-topology glycans, and reagents and methods relating thereto.
摘要:
The present invention provides a system for analyzing interactions between glycans and interaction partners that bind to them. The present invention also provides HA polypeptides that bind to umbrella-topology glycans, and reagents and methods relating thereto.
摘要:
The invention relates to compositions and methods for the modulation of the permeability of the epithelial cell barrier complex. In particular, the invention provides compositions and methods for using polysaccharides, preferably glycosaminoglycans, and agents that modify cell surface glycosaminoglycans, preferably glycosaminoglycan-degrading enzymes to modulate intercellular junctions. The compositions and methods provided can be used to facilitate the delivery of biologically active molecules.
摘要:
In one aspect, the present invention provides a device and method for real-time, direct detection of heparin in buffer and in serum comprising a microfluidic field-effect device as an affinity biosensor. The sensor is based on an electrolyte-insulator-silicon structure, and is manufactured by a standard high-yield silicon microfabrication process. The binding of heparin to the sensor surface induces a change in the insulator-electrolyte surface potential, which is measured as a change in sensor capacitance. To ensure the binding selectivity, protamine and antithrombin III are used as affinity probes.