摘要:
A pulse filtration apparatus of a power plant including an air separation unit (ASU) and a gas turbine engine is provided. The apparatus includes a conduit to transmit fluid from the ASU to a combustor of the gas turbine engine and a tap. The tap includes a first end fluidly coupled to the conduit, a second end opposite the first end and fluidly coupled to components of a filter housing disposed upstream from a compressor of the gas turbine engine and a main member fluidly interposed between the first and second ends. The tap is configured to remove fluid from the conduit and to transmit the removed fluid to the components of the filter housing.
摘要:
An air inlet system delivers a flow of air. The system included a temperature controlling section configured to alter temperature of the air flow. The temperature controlling section imparts a temperature variation distribution across different portions of the air flow. The system also includes a transition section, one or more flow diverters, one or more screens and/or a flow splitter to cause mixing of the different, temperature variant portions of the air flow and reduce the temperature variation distribution.
摘要:
A system includes a radiation detector array directed toward a fluid flow into a compressor. The radiation detector array is configured to output a signal indicative of a two-dimensional temperature profile of the fluid flow. The system also includes a controller communicatively coupled to the radiation detector array. The controller is configured to detect a temperature variation across the fluid flow based on the signal, and to adjust a parameter of a temperature control device to compensate for the detected temperature variation.
摘要:
A system includes a radiation detector array directed toward a fluid flow into a compressor. The radiation detector array is configured to output a signal indicative of a two-dimensional temperature profile of the fluid flow. The system also includes a controller communicatively coupled to the radiation detector array. The controller is configured to detect a temperature variation across the fluid flow based on the signal.
摘要:
An apparatus for cooling air for an intake to a gas turbine, is provided and includes a pressurized water piping and nozzle apparatus for producing a water spray in an airflow to the intake; and evaporative media for receiving the spray and causing a pressurizing of the air in the airflow.
摘要:
An apparatus for cooling air for an intake to a gas turbine, is provided and includes a pressurized water piping and nozzle apparatus for producing a water spray in an airflow to the intake; and evaporative media for receiving the spray and causing a pressurizing of the air in the airflow.
摘要:
A system includes a turbine fuel controller. The turbine fuel controller includes a purge control logic configured to control a purge sequence of mixing a purge gas with a first fuel during a first fuel shutdown, wherein the purge sequence is configured to open a purge valve for the purge gas before fully closing a fuel valve for the first fuel.
摘要:
An embodiment of the present invention takes the form of an application and process that incorporates a waste heat source to increase the temperature of the airstream entering an inlet section of a combustion turbine. An embodiment of the present invention may perform an anti-icing operation that reduces the need to operate the IBH system.
摘要:
A system includes a radiation sensor configured to direct a field of view toward a conduit within a heat recovery steam generator, and to output a signal indicative of a temperature of the conduit. The system also includes a controller communicatively coupled to the radiation sensor. The controller is configured to determine the temperature based on the signal, and to compare the temperature to a threshold value.
摘要:
Embodiments of the present invention provide an inertial filtration system for air-ingesting machines. The inertial filter 100 may comprise a reducer 133 downstream of a vortex generator. The reducer 133 decreases the area that the airstream flows through, which may increase the angular momentum and the centrifugal forces acting on the particles of the ingested airstream. This may increase the cleaning performance and a decrease in the pressure drop across the inertial filter 100. Generally, the inertial filter functions such that flow components of higher density are separated from the rest of the airstream. The higher density flow components are bled out of the inertial filter 100 via an outlet 135. The remaining flow components flow downstream to compressor section 535.