摘要:
By providing additional etch stop layers and/or etch protection layers, a corresponding etch process for forming contact openings for directly connecting polysilicon lines and active areas may be controlled in a highly reliable manner. Consequently, conductive line erosion and/or penetration into extension regions may be significantly reduced, thereby improving the reliability and performance of corresponding semiconductor devices.
摘要:
By providing an additional silicon dioxide based etch stop layer, a corresponding etch process for forming contact openings for directly connecting polysilicon lines and active areas may be controlled in a highly reliable manner. In another aspect, the etch selectivity of the contact structure may be increased by a modification of the etch behavior of the exposed portion of the contact etch stop layer.
摘要:
By providing additional etch stop layers and/or etch protection layers, a corresponding etch process for forming contact openings for directly connecting polysilicon lines and active areas may be controlled in a highly reliable manner. Consequently, conductive line erosion and/or penetration into extension regions may be significantly reduced, thereby improving the reliability and performance of corresponding semiconductor devices.
摘要:
By providing an additional silicon dioxide based etch stop layer, a corresponding etch process for forming contact openings for directly connecting polysilicon lines and active areas may be controlled in a highly reliable manner. In another aspect, the etch selectivity of the contact structure may be increased by a modification of the etch behavior of the exposed portion of the contact etch stop layer.
摘要:
By partially removing an etch stop layer prior to the formation of a first contact etch stop layer, a superior stress transfer mechanism may be provided in an integration scheme for generating strain by means of contact etch stop layers. Thus, a semiconductor device having different types of transistors may be provided, in which a high degree of metal silicide integrity as well as a highly efficient stress transfer mechanism is achieved.
摘要:
The present invention provides a technique for forming differently stressed contact etch stop layers, wherein sidewall spacers are removed prior to the formation of the contact etch stop layers. During the partial removal of respective contact etch stop layers, a corresponding etch stop layer regime is used to substantially avoid any unwanted stress-inducing material residuals, thereby significantly enhancing the stress transfer mechanism.
摘要:
By partially removing an etch stop layer prior to the formation of a first contact etch stop layer, a superior stress transfer mechanism may be provided in an integration scheme for generating strain by means of contact etch stop layers. Thus, a semiconductor device having different types of transistors may be provided, in which a high degree of metal silicide integrity as well as a highly efficient stress transfer mechanism is achieved.
摘要:
The present invention provides a technique for forming differently stressed contact etch stop layers, wherein sidewall spacers are removed prior to the formation of the contact etch stop layers. During the partial removal of respective contact etch stop layers, a corresponding etch stop layer regime is used to substantially avoid any unwanted stress-inducing material residuals, thereby significantly enhancing the stress transfer mechanism.
摘要:
During the patterning of stressed layers having different types of intrinsic stress, the effects of the deposition of a silicon dioxide based etch indicator material between the first and second dielectric layers may be significantly reduced by a controlled etch on the basis of optical measurement data indicating the etch rate and, thus, the performance of the respective etch process. In other cases, highly efficient etch indicator species may be incorporated into the stressed dielectric layers or may be formed on a surface portion thereof with reduced layer thickness, thereby providing an enhanced endpoint detection signal without creating the negative effects of silicon dioxide based indicator layers. In one illustrative embodiment, a stressed silicon, nitrogen and carbon-containing layer may be combined with a stressed silicon and nitrogen-containing layer, wherein the carbon species provides a prominent endpoint detection signal.
摘要:
By performing a plasma treatment for efficiently sealing the surface of a stressed dielectric layer containing silicon nitride, an enhanced performance during the patterning of contact openings may be achieved, since nitrogen-induced resist poisoning may be significantly reduced during the selective patterning of stressed layers of different types of intrinsic stress.