Abstract:
Heat transfer devices and systems for thermally coupling electrical components to a heatsink can comprise one or more all-metal heat transfer device(s) thermally coupling at least one electrical component to a heatsink. A heat transfer device can comprise a metal cup attached to a metal heatsink, and a metal piston and a compliant device disposed in the cup. The piston is forcible to a secured first position, upon reflowing solder, while compressing the compliant device. Upon reflowing solder again, the compliant device causes the piston to bias and attach to the electrical component to provide an all-metal thermal path and absorb assembly tolerances to avoid using thermal gap fillers. A method is provided for thermally coupling a heatsink to a plurality of electrical components via a plurality of all-metal, expandable heat transfer devices.
Abstract:
Heat transfer devices and systems for thermally coupling electrical components to a heatsink can comprise one or more all-metal heat transfer device(s) thermally coupling at least one electrical component to a heatsink. A heat transfer device can comprise a metal cup attached to a metal heatsink, and a metal piston and a compliant device disposed in the cup. The piston is forcible to a secured first position, upon reflowing solder, while compressing the compliant device. Upon reflowing solder again, the compliant device causes the piston to bias and attach to the electrical component to provide an all-metal thermal path and absorb assembly tolerances to avoid using thermal gap fillers. A method is provided for thermally coupling a heatsink to a plurality of electrical components via a plurality of all-metal, expandable heat transfer devices.
Abstract:
A surface mount device is disclosed. The surface mount device can include an electronic component operable in an electronic circuit. The surface mount device can also include a heat transfer component thermally coupled to the electronic component. The heat transfer component can have a heat transfer surface configured to interface with a heat sink. In addition, the surface mount device can include a resiliently flexible lead to electrically couple the electronic component to a circuit board. The resiliently flexible lead can be configured to resiliently deflect to facilitate a variable distance of the heat transfer surface from the circuit board, to enable the heat transfer surface and a planar heat transfer surface of another similarly configured surface mount device to be substantially aligned for interfacing with the heat sink.
Abstract:
A transition apparatus for connecting first and second circuit boards is provided. The transition apparatus includes a beam having edges and a length defined between the edges, beam circuitry running along the length of the beam and connections disposed at the edges of the beam to connect the beam circuitry with respective circuitry of the first and second circuit boards at respective interior, opposing surfaces thereof.
Abstract:
An apparatus includes a printed circuit board (PCB) including a surface that has a layer of circuitry. The apparatus also includes a heat sink configured to receive heat from the PCB. The apparatus further includes a thermally-conductive post configured to remove the heat from the PCB to the heat sink via thermal conduction through a thermal path. The thermal path is substantially orthogonal to the surface of the PCB. The post includes an end configured to physically couple to the layer of circuitry.
Abstract:
Heat transfer devices and systems for thermally coupling electrical components to a heatsink can comprise one or more all-metal heat transfer device(s) thermally coupling at least one electrical component to a heatsink. A heat transfer device can comprise a metal cup attached to a metal heatsink, and a metal piston and a compliant device disposed in the cup. The piston is forcible to a secured first position, upon reflowing solder, while compressing the compliant device. Upon reflowing solder again, the compliant device causes the piston to bias and attach to the electrical component to provide an all-metal thermal path and absorb assembly tolerances to avoid using thermal gap fillers. A method is provided for thermally coupling a heatsink to a plurality of electrical components via a plurality of all-metal, expandable heat transfer devices.
Abstract:
Heat transfer devices and systems for thermally coupling electrical components to a heatsink can comprise one or more all-metal heat transfer device(s) thermally coupling at least one electrical component to a heatsink. A heat transfer device can comprise a metal cup attached to a metal heatsink, and a metal piston and a compliant device disposed in the cup. The piston is forcible to a secured first position, upon reflowing solder, while compressing the compliant device. Upon reflowing solder again, the compliant device causes the piston to bias and attach to the electrical component to provide an all-metal thermal path and absorb assembly tolerances to avoid using thermal gap fillers.A method is provided for thermally coupling a heatsink to a plurality of electrical components via a plurality of all-metal, expandable heat transfer devices.
Abstract:
An apparatus includes a printed circuit board (PCB) including a surface that has a layer of circuitry. The apparatus also includes a heat sink configured to receive heat from the PCB. The apparatus further includes a thermally-conductive post configured to remove the heat from the PCB to the heat sink via thermal conduction through a thermal path. The thermal path is substantially orthogonal to the surface of the PCB. The post includes an end configured to physically couple to the layer of circuitry.
Abstract:
A transition apparatus for connecting first and second circuit boards is provided. The transition apparatus includes a beam having edges and a length defined between the edges, beam circuitry running along the length of the beam and connections disposed at the edges of the beam to connect the beam circuitry with respective circuitry of the first and second circuit boards at respective interior, opposing surfaces thereof.
Abstract:
A surface mount device is disclosed. The surface mount device can include an electronic component operable in an electronic circuit. The surface mount device can also include a heat transfer component thermally coupled to the electronic component. The heat transfer component can have a heat transfer surface configured to interface with a heat sink. In addition, the surface mount device can include a resiliently flexible lead to electrically couple the electronic component to a circuit board. The resiliently flexible lead can be configured to resiliently deflect to facilitate a variable distance of the heat transfer surface from the circuit board, to enable the heat transfer surface and a planar heat transfer surface of another similarly configured surface mount device to be substantially aligned for interfacing with the heat sink.