摘要:
One aspect of the present invention relates to an implantable medical device comprising a surface coated with a polyelectrolyte multilayer, wherein said surface is glass, metal, plastic, polymer, or fiberglass. Another aspect of the present invention involves a method of preparing a PEM-coated implantable medical device, comprising the step of applying a film to a surface of an implantable medical device, wherein said film comprises a polyelectrolyte multilayer and said surface is glass, metal, plastic, polymer, or fiberglass. Another aspect of the present invention involves a method of reducing the wear between two contacting materials, comprising the step of moving a first material in contact with a second material in an environment, wherein a first surface of said first material is in contact with a second surface of said second material, wherein said first surface, said second surface, or both is coated with a polyelectrolyte multilayer, thereby decreasing the wear of said first material, said second material, or both compared to the wear in the absence of said polyelectrolyte multilayer.
摘要:
One aspect of the present invention relates to an implantable medical device comprising a surface coated with a polyelectrolyte multilayer, wherein said surface is glass, metal, plastic, polymer, or fiberglass. Another aspect of the present invention involves a method of preparing a PEM-coated implantable medical device, comprising the step of applying a film to a surface of an implantable medical device, wherein said film comprises a polyelectrolyte multilayer and said surface is glass, metal, plastic, polymer, or fiberglass. Another aspect of the present invention involves a method of reducing the wear between two contacting materials, comprising the step of moving a first material in contact with a second material in an environment, wherein a first surface of said first material is in contact with a second surface of said second material, wherein said first surface, said second surface, or both is coated with a polyelectrolyte multilayer, thereby decreasing the wear of said first material, said second material, or both compared to the wear in the absence of said polyelectrolyte multilayer.
摘要:
One aspect of the present invention relates to an implantable medical device comprising a surface coated with a polyelectrolyte multilayer, wherein said surface is glass, metal, plastic, polymer, or fiberglass. Another aspect of the present invention involves a method of preparing a PEM-coated implantable medical device, comprising the step of applying a film to a surface of an implantable medical device, wherein said film comprises a polyelectrolyte multilayer and said surface is glass, metal, plastic, polymer, or fiberglass. Another aspect of the present invention involves a method of reducing the wear between two contacting materials, comprising the step of moving a first material in contact with a second material in an environment, wherein a first surface of said first material is in contact with a second surface of said second material, wherein said first surface, said second surface, or both is coated with a polyelectrolyte multilayer, thereby decreasing the wear of said first material, said second material, or both compared to the wear in the absence of said polyelectrolyte multilayer.
摘要:
Titania-based porous nanoparticle coatings are mechanically robust, with low haze, which exhibit short time scales for decomposition of fingerprint oils under ultraviolet light. The mechanism by which a typical dactylogram is consumed combines wicking of the sebum into the nanoporous titania structure followed by photocatalytic degradation. These TiO2 nanostructured surfaces are also anti-fogging, anti-bacterial, and compatible with flexible glass substrates and remain photocatalytically active in natural sunlight.
摘要:
An optical article comprising a substrate and on at least one face of the substrate a multilayered antireflecting coating functioning in an interferential manner having antifog properties, said antireflecting coating including a last layer with a refractive index n≦1.55 and a physical thickness of 120 nm or less directly deposited on a high refractive index layer (HI layer) having a refractive index n>1.55, and a thickness of less than 500 nm.
摘要:
Uniform, functional polymer patches can be attached to a fraction of the surface area of living individual cells. These surface-modified cells remain viable after attachment of the functional patch. The patch does not completely occlude the cellular surface from the surrounding environment. Functional payloads carried by the patch may include, for example, drugs or other small molecules, peptides, proteins, thermally responsive polymers, and nanoparticles, or any other material that can be incorporated in a polymer patch of subcellular dimensions. The patch can include one or more polyelectrolyte multilayers (PEMs).
摘要:
An optical article comprising a substrate and on at least one face of the substrate a multilayered antireflecting coating functioning in an interferential manner having antifog properties, said antireflecting coating including a last layer with a refractive index n≦1.55 and a physical thickness of 120 nm or less directly deposited on a high refractive index layer (HI layer) having a refractive index n>1.55, and a thickness of less than 500 nm.
摘要:
Uniform, functional polymer patches can be attached to a fraction of the surface area of living individual cells. These surface-modified cells remain viable after attachment of the functional patch. The patch does not completely occlude the cellular surface from the surrounding environment. Functional payloads carried by the patch may include, for example, drugs or other small molecules, peptides, proteins, thermally responsive polymers, and nanoparticles, or any other material that can be incorporated in a polymer patch of subcellular dimensions. The patch can include one or more polyelectrolyte multilayers (PEMs).