摘要:
A method and structure for a display system having multiple spatial light modulators (SLMs) (16), each of which contributes an image of one color that is perceived by the viewer as a combined image. The SLMs (16) have more rows and columns of pixel elements (42) than rows or columns of pixel data to be displayed. A window of "active" pixel elements (42) can be shifted up and down or right and left by selecting which pixel elements (42) are to receive data. The addressing circuit (31, 31a, 35, 35a) of each SLM 16 can be controlled so as to accomplish this shifting.
摘要:
A system (30) for packing data into a video processor is provided. System (30) comprises demultiplexer (32), first and second first in-first out buffer memories (34) and (36), and multiplexer (38). Demultiplexer (32) divides a field of video data into first and second parts (42) and (44). First and second parts (42) and (44) are stored in first first in-first out buffer memories (34) and (36), respectively. Multiplexer (38) combines one line from first first in-first out buffer memory (34) with one line from second first in-first out buffer memory (36) to form a single line for processing.
摘要:
A SLM-based projection display system (10) samples and processes video data for delivery to a spatial light modulator (SLM) (13c), and uses a color wheel (14a) to color the SLM-generated images. A frame memory (13b) provides data to the SLM (13c) and is managed so that, if the phase of the incoming video signal changes, a desired phase relationship between the color wheel position and the data available to the SLM (13c) can be maintained. Also, a motor control unit (15a) uses a horizontal sync signal to generate a drive signal for the color wheel motor (16a), which limits the transient time during phase-changing events, and which provides a means for adjusting the phase of the drive signal.
摘要:
A SLM-based projection display system (10) samples and processes video data for delivery to a spatial light modulator (SLM) (13c), and uses a color wheel (14a) to color the SLM-generated images. A frame memory (13b) provides data to the SLM (13c) and is managed so that, if the phase of the incoming video signal changes, a desired phase relationship between the color wheel position and the data available to the SLM (13c) can be maintained. Also, a motor control unit (15a) uses a horizontal sync signal to generate a drive signal for the color wheel motor (16a), which limits the transient time during phase-changing events, and which provides a means for adjusting the phase of the drive signal.
摘要:
A digital television system (10) is provided. System (10) may receive a video signal at composite video interface and separation circuit (16). The video signal is separated into separate video signals by composite video interface and separation circuit (16). The separate video signals are converted to digital video signals in analog to digital converter circuit (18). Line slicer (14) divides each line of digital video signal into a plurality of channels such that each channel may be processed in parallel by channel signal processors (22a) through (22d). Each channel signal processor (22a) through (22d) may provide two lines of output for each line of video input. The processed digital video signals may be formatted for displays (26a) through (26c) in formatters (24a) through (24c).
摘要:
A film-to-video format detector (24) for a digital television receiver (10). The detector (24) receives pixel data from a current field and a second preceding field. It determines a set of pixel difference values, sums them to obtain a field difference value, and compares the field difference value to a threshold. These steps are repeated to obtain a series of field difference indicators. This series is analyzed to determine whether it has a pattern corresponding to a film-to-video format.
摘要:
A television system 106 and display method for receiving and displaying television broadcasts having various formats. The television system resizes (106) the various received image formats for display on a common display device. Images are resized horizontally by altering the rate at which data is sampled by the television (106). Images are resized vertically by using vertical scaling algorithms which alter the number of lines in an image. Format detection may be done automatically by decoding information contained in the vertical interval of the television broadcast signal, or by counting the number of lines in each frame. The input format may be indicated by a viewer.
摘要:
A sequential color system is provided in which a processor (22) is coupled to a memory (24) and a receiver (27). Images are generated by shining light from a light source (28) through a color wheel (30) and onto DMD array (26). Light from the DMD array (26) is shone on screen (32). By adjusting the speed and make-up of color wheel (30) color separation is greatly reduced or eliminated. Also there are techniques for sequential imaging which may be applied to other technologies, such as CRT technologies.
摘要:
An SLM-based video receiver (10) receives a video input of some standardized format at a signal interface unit (11) and passes the input to a processor (12). The processor (12) performs analog-to-digital conversion if the pixel data is analog and also performs other enhancements to prepare the pixel data for loading into a video memory (14). The pixel data from the processor (12), representing a field of pixel data, is stored into the memory (14) for loading into rows of pixel elements of a spatial light modulator (16). The spatial light modulator (16) receives the pixel data in rows and each individual pixel element responds accordingly. The pixel elements of the spatial light modulator (16) emit light or reflect light from a source (18) and generate a video frame for display on a screen (20). By exploiting the addressing functions of the spatial light modulator (16), the SLM-based video receiver (10) displays a video frame using a field of pixel data.
摘要:
A digital television system (10) System (10) may receive a video signal at composite video interface and separation circuit (16). The video signal is separated into component form by composite video interface and separation circuit (16). The component video signals are converted to digital component video signals in analog to digital converter circuit (18). Line slicer (14) divides each line of digital component video signal into a plurality of channels such that each channel may be processed in parallel by channel signal processors (22a) through (22d). Each channel signal processor (22a) through (22d) may provide two lines of output for each line of video input. The processed digital component video signals may be formatted for displays (26a) through (26c) in formatters (24a) through (24c). Each formatter (24a) through (24c) may comprise a plurality of first in-first out buffer memories (34a) through (34j). One of each channel signal processors (22a ) through (22d) may be coupled to two of first in-first out buffer memories (34a) through (34j). Additionally, each formatter (24a) through (24c) may comprise channel data format units (38a) through (38d), each associated with a channel of, for example, display (24a). Channel data format units (38a) through (38d) are coupled to appropriate of first in-first out buffer memories (34a) through (34j) via multiplexers (36a) through (36d). Each formatter (24a) through (24c) may remove overlap between channels of system (10) and may format the processed video signal into appropriate channels for displays (26a) through (26c).