摘要:
In devices such as flat panel displays, an aluminum oxide layer is provided between an aluminum layer and an ITO layer when such materials would otherwise be in contact to protect the ITO from optical and electrical defects sustained, for instance, during anodic bonding and other fabrication steps. This aluminum oxide barrier layer is preferably formed either by: (1) partially or completely anodizing an aluminum layer formed over the ITO layer, or (2) an in situ process forming aluminum oxide either over the ITO layer or over an aluminum layer formed on the ITO layer. After either of these processes, an aluminum layer is then formed over the aluminum oxide layer.
摘要:
In devices such as flat panel displays, an aluminum oxide layer is provided between an aluminum layer and an ITO layer when such materials would otherwise be in contact to protect the ITO from optical and electrical defects sustained, for instance, during anodic bonding and other fabrication steps. This aluminum oxide barrier layer is preferably formed either by: (1) partially or completely anodizing an aluminum layer formed over the ITO layer, or (2) an in situ process forming aluminum oxide either over the ITO layer or over an aluminum layer formed on the ITO layer. After either of these processes, an aluminum layer is then formed over the aluminum oxide layer.
摘要:
In devices such as flat panel displays, an aluminum oxide layer is provided between an aluminum layer and an ITO layer when such materials would otherwise be in contact to protect the ITO from optical and electrical defects sustained, for instance, during anodic bonding and other fabrication steps. This aluminum oxide barrier layer is preferably formed either by: (1) partially or completely anodizing an aluminum layer formed over the ITO layer, or (2) an in situ process forming aluminum oxide either over the ITO layer or over an aluminum layer formed on the ITO layer. After either of these processes, an aluminum layer is then formed over the aluminum oxide layer.
摘要:
A multi-layered structure, and method for producing same, which may include at least one glass layer anodically bonded to an intermediate layer. The intermediate layer may function as a anodic bonding layer, an etch stop layer, and/or a hard mask layer. A template may be formed of the multi-layered structure by forming a desired pattern of openings therein by way of, for example, etching. Such a template may, for example, be used in the alignment and adherence of spacer structures to an electrode plate during the fabrication of flat panel displays. When used in this context, the construction of such a template results in more precise control of the patterning and sizing of the holes formed therein which thereby allows for more precise placement of spacer structures as well as the use of spacer structures exhibiting relatively higher aspect ratios during the fabrication of flat panel displays.
摘要:
A multi-layered structure, and method for producing same, which may include at least one glass layer anodically bonded to an intermediate layer. The intermediate layer may function as an anodic bonding layer, an etch stop layer, and/or a hard mask layer. A template may be formed of the multi-layered structure by forming a desired pattern of openings therein by way of, for example, etching. Such a template may, for example, be used in the alignment and adherence of spacer structures to an electrode plate during the fabrication of flat panel displays. When used in this context, the construction of such a template results in more precise control of the patterning and sizing of the holes formed therein which thereby allows for more precise placement of spacer structures as well as the use of spacer structures exhibiting relatively higher aspect ratios during the fabrication of flat panel displays.
摘要:
Novel etch techniques are provided for shaping silicon features below the photolithographic resolution limits. FinFET devices are defined by recessing oxide and exposing a silicon protrusion to an isotropic etch, at least in the channel region. In one implementation, the protrusion is contoured by a dry isotropic etch having excellent selectivity, using a downstream microwave plasma etch.
摘要:
The invention includes methods of forming field effect transistors. In one implementation, the invention encompasses a method of forming a field effect transistor on a substrate, where the field effect transistor comprises a pair of conductively doped source/drain regions, a channel region received intermediate the pair of source/drain regions, and a transistor gate received operably proximate the channel region. Such implementation includes conducting a dopant activation anneal of the pair of source/drain regions prior to depositing material from which a conductive portion of the transistor gate is made. Other aspects and implementations are contemplated.
摘要:
Methods and systems for generating steam using solar energy are provided here. The methods and systems can be used to generate steam of a desired quality, e.g. about 70%, or superheated steam. Some methods for producing steam of a desired quality comprise flowing water into an inlet of receiver in a linear Fresnel reflector system, wherein the receiver comprises multiple parallel tubes ti connected in parallel, and i=1,k, and irradiating each tube ti along its respective length Li with solar radiation so that solar radiation absorbed at each tube generates thermal input along its length and so that water begins to boil in at least one of the tubes at a point λi along its length. The methods comprise using one or more temperatures Ti in an economizer region of a tube ti or one or more changes in length of the tubes as input to a controller that controls mass flow of water into each of the multiple tubes, thereby controlling quality of steam exiting the receiver.
摘要:
The invention includes methods of forming isolation regions. An opening can be formed to extend into a semiconductor material, and an upper periphery of the opening can be protected with a liner while a lower periphery is unlined. The unlined portion can then be etched to form a widened region of the opening. Subsequently, the opening can be filled with insulative material to form an isolation region. Transistor devices can then be formed on opposing sides of the isolation region, and electrically isolated from one another with the isolation region. The invention also includes semiconductor constructions containing an electrically insulative isolation structure extending into a semiconductor material, with the structure having a bulbous bottom region and a stem region extending upwardly from the bottom region to a surface of the semiconductor material.
摘要:
Some embodiments include methods of forming isolation regions in which spin-on material (for example, polysilazane) is converted to a silicon dioxide-containing composition. The conversion may utilize one or more oxygen-containing species (such as ozone) and a temperature of less than or equal to 300° C. In some embodiments, the spin-on material is formed within an opening in a semiconductor material to form a trenched isolation region. Other dielectric materials may be formed within the opening in addition to the silicon dioxide-containing composition formed from the spin-on material. Such other dielectric materials may include silicon dioxide formed by chemical vapor deposition and/or silicon dioxide formed by high-density plasma chemical vapor deposition.