摘要:
The invention relates to polymers derived from macrocyclic oligomers containing organo clay fillers comprising a) a polymer derived from a macrocyclic oligomer; b) clay platelets; and c) the residue of one or more onium compounds having at least one ligand with a C5 or greater carbon chain and at least one ligand containing one or more functional groups having one or more active hydrogen atoms wherein the functional group is reactive with the macrocyclic oligomer and/or functional groups formed when the macrocyclic oligomer decyclizes wherein a portion of one or more of the onium compounds is ironically bound to the clay platelet and covalently bonded to the polymers derived from macrocyclic oligomers. The invention also relates to processes for preparing such compositions. Furthermore, the invention relates to articles prepared from organoclay filled polymer compositions.
摘要:
A reactive hot melt composition, having a softening point of at least 50° C., and being curable on heating to a temperature of 150° C. The composition comprises a blend of (a) a macrocyclic oligomer having a softening point of at least 50° C., containing at least one ring having eight or more atoms, and being able to undergo decyclization at a temperature of 150° C. or more, to produce a polymerizable species, wherein each cyclic oligomer molecule provides two or more structural repeat units of the same or different formula for the resulting polymer, and (b) a thermoplastic resin, its use as an adhesive and methods of its application.
摘要:
Disclosed are novel carbonate block copolymers and methods of making the same. Some carbonate block copolymers include oligomeric carbonate blocks bonded to one or more silicon-containing non-carbonate block, wherein the silicon-containing non-carbonate block is comprised of a diamine moiety and the carbonate block is joined to the silicon-containing non-carbonate block through a urethane group. Other carbonate block copolymers include oligomeric carbonate blocks bonded to one or more non-silicon-containing non-carbonate block, wherein the non-silicon-containing non-carbonate block is comprised of a diamine moiety and the carbonate block is joined to the non-silicon-containing non-carbonate block through a urethane group. The carbonate block may include Bisphenol-A moieties. The diamine from which either the silicon-containing or non-silicon-containing non-carbonate block is derived may be primary, secondary or tertiary.
摘要:
The thermal energy storage material (TESM) system includes a container having a wall surface, and a TESM in at least partial contact with the wall surface. The TESM may include, consist essentially of, or consist of a metal containing compound comprising lithium, one or more different metal cations (i.e., different from lithium) and one or more polyatomic anions. The TESM may have a liquidus temperature, TL, from about 100° C. to about 250° C. The TESM may exhibits a heat storage density from 1 MJ/l to 1.84 MJ/l, as measured from 300° C. to 80° C. The TESM system may be free of water. If any water is present in the TESM system, the water concentration preferably is less than 10 wt. %. Preferably, the TESM system is generally resistant to corrosion at temperatures of about 300° C.
摘要:
Meta-block copolymers and a process for preparing a product mixture comprising meta-block copolymers by contacting a metathesis catalyst under metathesis conditions with a composition comprising two or more ethylenically unsaturated polymers, said unsaturation defining one or more polymer segments in each ethylenically unsaturated polymer, at least one polymer segment in at least one ethylenically unsaturated polymer being chemically distinguishable from at least one polymer segment in at least one other ethylenically unsaturated polymer, characterized in that each meta-block copolymer in the product mixture comprises a random distribution of said chemically distinguishable polymer blocks.
摘要:
The invention is directed at articles and devices for thermal energy storage, and for process of storing energy using these articles and devices. The articles comprise a capsular structure 10 having one or more sealed spaces 14, wherein the sealed spaces encapsulate one or more thermal energy storage materials 26: wherein the capsular structure has one or more fluid passages 16 which are sufficiently large to allow a heat transfer fluid to flow through the one or more fluid passages; and when a heat transfer fluid contacts the capsular structure 10 the thermal energy storage material 26 is Isolated from the heal transfer fluid. The devices include two or more articles arranged so that a fluid, such as a heat transfer fluid, may flow through the fluid passage 16 of an article before or after flowing through a space between two of the articles.
摘要:
Two or more chemically distinguishable ethylenically unsaturated polymers, at least one having from 0.001 to 50 mole percent unsaturation and at least one other having an expected Tg or measured Tm value greater than 100° C. are cross-metathesized to form thermoplastic elastomers having improved performance properties.
摘要:
Improved thermal energy storage materials, devices and systems employing the same and related methods. The thermal energy storage materials may include a phase change material that includes a metal-containing compound. This invention is directed at methods of encapsulating thermal energy storage materials, devices containing encapsulated thermal energy storage materials, and capsular structures for encapsulating thermal energy storage materials.
摘要:
Polymers are filled with from 1 to 8% by weight of an expanded graphite having a BET surface area of at least 120 m2/g. Processes for preparing such polymers include forming a dispersion of the expanded graphite in a polymerizable monomer or curable polymer precursor, and polymerizing or curing same in the presence of the expanded graphite. Electroconductive polymers can be prepared in this manner using low levels of the expanded graphite material.
摘要:
Two or more chemically distinguishable ethylenically unsaturated polymers, at least one having from 0.001 to 50 mole percent unsaturation and at least one other having an expected Tg or measured Tm value greater than 100° C. are cross-metathesized to form thermoplastic elastomers having improved performance properties.