Abstract:
A method to process a laboratory carrier in a laboratory system based on a feature of a test liquid in the laboratory carrier is presented. The laboratory system comprises the laboratory carrier comprising the test liquid, a terahertz wave source, a terahertz detector, a laboratory carrier processing device, and a control unit. Using terahertz technology and data analysis, the feature of the test liquid in the laboratory carrier can be determined. In addition, the control unit controls the laboratory carrier processing device based on the determined feature of the test liquid.
Abstract:
A device and method for assigning a blood plasma sample to a class from a predetermined set of classes are presented. The set of classes comprises a good class, a lipemic class, a hemolytic class and an icteric class. For assignment to one of the classes, the blood plasma sample is exposed to light and measurement values dependent on transmitted or scattered light power are evaluated in order to carry out an assignment.
Abstract:
A device and method for assigning a blood plasma sample to a class from a predetermined set of classes are presented. The set of classes comprises a good class, a lipemic class, a hemolytic class and an icteric class. For assignment to one of the classes, the blood plasma sample is exposed to light and measurement values dependent on transmitted or scattered light power are evaluated in order to carry out an assignment.
Abstract:
A device and method for assigning a blood plasma sample to a class from a predetermined set of classes are presented. The set of classes comprises a good class, a lipemic class, a hemolytic class and an icteric class. For assignment to one of the classes, the blood plasma sample is exposed to light and measurement values dependent on transmitted or scattered light power are evaluated in order to carry out an assignment.
Abstract:
A device and method for assigning a blood plasma sample to a class from a predetermined set of classes are presented. The set of classes comprises a good class, a lipemic class, a hemolytic class and an icteric class. For assignment to one of the classes, the blood plasma sample is exposed to light and measurement values dependent on transmitted or scattered light power are evaluated in order to carry out an assignment.
Abstract:
A method for detecting clots in a liquid is presented. The liquid is in a sample container. Light is irradiated having a first wavelength to the sample container by a first light source at a changeable vertical irradiating position (P_0 to P_n) such that the light irradiated by the first light source passes through the sample container along a first measurement path. An intensity of light having the first wavelength passing along the first measurement path and exiting the sample container is measured. Clots are detected in response to the measured intensity.
Abstract:
A method to process a laboratory carrier in a laboratory system based on a feature of a test liquid in the laboratory carrier is presented. The laboratory system comprises the laboratory carrier comprising the test liquid, a terahertz wave source, a terahertz detector, a laboratory carrier processing device, and a control unit. Using terahertz technology and data analysis, the feature of the test liquid in the laboratory carrier can be determined. In addition, the control unit controls the laboratory carrier processing device based on the determined feature of the test liquid.
Abstract:
An apparatus for determining a vertical position of an interface between a first component and a second component comprising different layers in a sample container comprises a first unit comprising a first emitting light, a first optics, and a first detector; a second unit vertically spaced from the first unit comprising a second emitting light, a second optics, and a second detector; a driving unit to move the first unit and the second unit relative to the sample container; a position sensing unit to output a position sensing signal indicative of a vertical position of the sample container; and a vertical position determining unit to calculate the vertical position of the interface.
Abstract:
An apparatus for determining a vertical position of an interface between a first component and a second component comprising different layers in a sample container comprises a first unit comprising a first emitting light, a first optics, and a first detector; a second unit vertically spaced from the first unit comprising a second emitting light, a second optics, and a second detector; a driving unit to move the first unit and the second unit relative to the sample container; a position sensing unit to output a position sensing signal indicative of a vertical position of the sample container; and a vertical position determining unit to calculate the vertical position of the interface.
Abstract:
A method for detecting clots in a liquid is presented. The liquid is in a sample container. Light is irradiated having a first wavelength to the sample container by a first light source at a changeable vertical irradiating position (P—0 to P_n) such that the light irradiated by the first light source passes through the sample container along a first measurement path. An intensity of light having the first wavelength passing along the first measurement path and exiting the sample container is measured. Clots are detected in response to the measured intensity.