摘要:
The present invention relates to a method for fabrication of in-laid metal interconnects. The method comprises the steps of providing a substrate with a dielectric material on top thereof, depositing a protection layer on top of the dielectric material, depositing a sacrificial layer on top of the protection layer, the sacrificial layer having a mechanical strength that is lower than the mechanical strength of the protection layer, making an opening) through the sacrificial layer, through the protection layer and into the dielectric material, depositing a barrier layer in the opening and on the sacrificial layer, depositing metal material on the barrier layer, the metal material filling the opening, removing portions of the metal material existing beyond the opening by means of polishing, and removing the barrier layer and the sacrificial layer in one polishing step.
摘要:
A micro-device with a cavity, the micro-device including a substrate. A method of forming the micro-device includes the steps of: A) providing the substrate having a surface and comprising a sacrificial oxide region at the surface; B) covering the sacrificial oxide region with a porous layer being permeable to a vapor HF etchant; and C) selectively etching the sacrificial oxide region through the porous layer using the vapor HF etchant to obtain the cavity. This method may be used in the manufacture of various micro-devices with a cavity , i.e. MEMS devices, and in particular in the encapsulation part thereof, and semiconductor devices, and in particular the BEOL-part thereof.
摘要:
The invention relates to a micro-device with a cavity (50), the micro-device comprising a substrate (10, 110), the method comprising steps of: A) providing the substrate (10, 110), having a surface and comprising a sacrificial oxide region (20, 107, 115) at the surface ( ); B) covering the sacrificial oxide region (20, 107, 115) with a porous layer (40, 114, 124) being permeable to a vapor HF etchant (100), and C) selectively etching the sacrificial oxide region (20, 107, 115) through the porous layer (40, 114, 124) using the vapor HF etchant (100) to obtain the cavity (50). This method may be used in the manufacture of various micro-devices with a cavity (50), i.e. MEMS devices, and in particular in the encapsulation part thereof, and semiconductor devices, and in particular the BEOL-part thereof.
摘要:
A method of packaging a micro electromechanical structure is disclosed. The method comprises the steps of forming the structure on a substrate, depositing a sacrificial layer over the structure, patterning the sacrificial layer, depositing a porous layer over the patterned sacrificial layer, removing the patterned sacrificial layer through the porous layer, treating the porous layer with a plasma and depositing a capping layer over the plasma-treated porous layer. The plasma treatment step ensures that the capping layer material cannot enter the cavity formed by the removal of the sacrificial layer through the porous layer. A device formed by this method is also disclosed.
摘要:
A method of packaging a micro electromechanical structure is disclosed. The method comprises the steps of forming the structure on a substrate, depositing a sacrificial layer over the structure, patterning the sacrificial layer, depositing a porous layer over the patterned sacrificial layer, removing the patterned sacrificial layer through the porous layer, treating the porous layer with a plasma and depositing a capping layer over the plasma-treated porous layer. The plasma treatment step ensures that the capping layer material cannot enter the cavity formed by the removal of the sacrificial layer through the porous layer. A device formed by this method is also disclosed.
摘要:
A method of manufacturing a semiconductor device having damascene structures with air gaps is provided. In one embodiment, the method comprises providing a substantially planar layer having a first metal layer, depositing a via level dielectric layer, patterning the via level dielectric layer, at least partly etching the via level dielectric layer, depositing a disposable layer on the at least partly etched via level dielectric layer, patterning the disposable layer, depositing a second metal layer, planarizing second metal layer, depositing permeable dielectric layer after planarizing the second metal layer, and removing the disposable layer through the permeable dielectric layer to form air gaps.
摘要:
The method of manufacturing an integrated circuit (IC) according to the invention starts with providing a pre-fabricated integrated circuit (10) comprising an electrical device (2) and having a surface (11) coated with a dielectric material (12) and a metal (15). The dielectric material (12), which may be separated from the metal (15) by the barrier layer (14), has an opening (13), which is filled with the metal (15). Portions of the metal (15) outside the opening (13) are removed by polishing for a first period of time, after which an etching agent (25) is added to the polishing liquid (24) and polishing is continued for a second period of time for removing portions of the metal (15) remaining outside the opening (13). The polishing apparatus (40) is able to perform the method.
摘要:
A method of manufacturing a semiconductor device having damascene structures with air gaps is provided. In one embodiment, the method comprises the steps of depositing and patterning a disposable layer, depositing a first barrier layer on top of the patterned disposable layer, depositing a metal layer, planarizing the metal layer, depositing a second barrier layer, planarizing the second barrier layer until substantially no barrier layer material is present on top of the disposable layer, depositing a permeable layer, removing the disposable layer through the permeable layer to form air gaps.
摘要:
The present invention relates to a method for fabrication of in-laid metal interconnects. The method comprises the steps of providing a substrate with a dielectric material (1) on top thereof, depositing a protection layer (2) on top of the dielectric material, depositing a sacrificial layer (7) on top of the protection layer, the sacrificial layer having a mechanical strength that is lower than the mechanical strength of the protection layer, making an opening (3) through the sacrificial layer, through the protection layer and into the dielectric material, depositing a barrier layer (4) in the opening and on the sacrificial layer, depositing metal material (5) on the barrier layer, the metal material filling the opening, removing portions of the metal material existing beyond the opening by means of polishing, and removing the barrier layer and the sacrificial layer in one polishing step.
摘要:
A capacitive sensor for detecting the presence of a substance includes a plurality of upstanding conductive pillars arranged within a first layer of the sensor, a first electrode connected to a first group of the pillars, a second electrode connected to a second, different group of the pillars, and a dielectric material arranged adjacent the pillars, for altering the capacitance of the sensor in response to the presence of said substance.