摘要:
A needle is pressed into the backside oxide of a semiconductor wafer and a voltage applied to the wafer greater than the breakdown voltage of the oxide in order to make an electrical contact with the bulk material of the wafer. A capacitor plate is provided proximate to a wafer on a chuck and a Kelvin probe is provided proximate to the wafer. A varying voltage is applied between the chuck and the capacitor plate and a voltage is monitored between the Kelvin probe and the chuck. The monitored voltage remaining constant indicates electrical contact between the chuck and the wafer.
摘要:
An apparatus for making and verifying electrical contact with the backside of a semiconductor wafer having a bulk portion covered with an insulating layer of oxide includes a contact probe, a wafer chuck having at least one probe vacuum groove and a probe aperture and a probe cylinder having a low pressure and a high pressure portion. The low pressure portion communicates with the probe vacuum groove and the probe aperture. The apparatus further includes a piston movably located between the low pressure and high pressure portions. The contact probe is attached to the piston and adapted to be protrudable from the probe aperture. The groove, aperture and low pressure portion are adapted to form a low pressure chamber with the wafer. The probe is urgeable to pierce the oxide and make electrical contact with the bulk portion of the wafer. The apparatus further includes a time-varying voltage source connectable between the chuck and the probe, and a current measuring device for measuring a current between the chuck and the probe. The probe is in electrical contact with the wafer if the current corresponds at least to a capacitive coupling between the chuck and the wafer.
摘要:
A method of measuring total charge of an insulating layer on a semiconductor substrate includes applying corona charges to the insulating layer, and measuring a surface photovoltage of the insulating layer after applying each of the corona charges. The charge density of each of the corona charges is measured with a coulombmeter. A total corona charge required to obtain a surface photovoltage of a predetermined fixed value is determined and used to calculate the total charge of the insulating layer. The fixed value corresponds to either a flatband or midband condition.
摘要:
A corona source is used to apply charge to an insulating layer. The resulting voltage over time is used to determine the current through the layer. The resulting data determines a current-voltage characteristic for the layer and may be used to determine the tunneling field for the layer.
摘要:
A conductive screen is placed between a corona gun and the surface of a semiconductor wafer. The charge deposited on the wafer by the gun is controlled by a potential applied to the screen. A chuck orients the wafer in close proximity to the screen. A desired charge is applied to the wafer by first applying a surplus of one charge to the wafer and then depositing an opposite polarity charge until the potential of the wafer equals the potential of the screen.
摘要:
A method and apparatus comprises heating a wafer to a temperature sufficient to temperature stress the wafer and enable ion motion. The wafer is then initialized in a measurement region with a non-contact corona discharge of a first polarity until a first dielectric field is developed, wherein any mobile ions present in the dielectric layer or at an air/dielectric interface move to a substrate/dielectric interface. A non-contact pulsed corona discharge of a second polarity, opposite the first polarity, is then applied to the wafer until a second dielectric field is developed and an amount of corona discharge Q.sub.MEASURED necessary to change the dielectric field from the first dielectric field to the second dielectric field is measured, wherein any mobile ions present at the dielectric/substrate interface move to the air/dielectric interface. An ideal amount of corona discharge Q.sub.IDEAL, in the absence of any highly mobile ionic species, necessary to change the dielectric field voltage of a dielectric layer of known thickness from a third dielectric field to a fourth dielectric field is then established. Lastly, measured corona discharge Q.sub.MEASURED is compared to ideal corona discharge Q.sub.IDEAL, wherein a quantitative difference between Q.sub. MEASURED and Q.sub.IDEAL is indicative of the amount of mobile charge Q.sub.MOBILE, Q.sub.MOBILE being representative of the amount of mobile ionic species in the dielectric layer.
摘要:
Corona charges are used to bias a wafer to push down mobile charges and then pull them up during temperature cycles. Mobile charge is measured from the drops in the corona voltage due to the mobile charges. Corrections are made in the measurements for dipole potentials, leakage and silicon band-bending.
摘要:
Corona charges are used to bias a wafer to push down mobile charges and then pull them up during temperature cycles. Mobile charge is measured from the drops in the corona voltage due to the mobile charges. Corrections are made in the measurements for dipole potentials, leakage and silicon band-bending.
摘要:
Corona charges are used to bias a wafer to push down mobile charges and then pull them up during temperature cycles. Mobile charge is measured from the drops in the corona voltage due to the mobile charges. Corrections are made in the measurements for dipole potentials, leakage and silicon band-bending.
摘要:
A corona source is used to repetitively apply charge to an oxide layer on a semiconductor. A Kelvin probe is used to measure the resulting voltage across the layer. The tunneling field is determined based on the value of voltage at which the voltage measurement saturates.