摘要:
A chimeric phosphorylation indicator is provided. A chimeric phosphorylation indicator can contain a donor molecule, a phosphorylatable domain, a phosphoaminoacid binding domain (PAABD), and an acceptor molecule. A chimeric phosphorylation indicator also can contain a phosphorylatable polypeptide and a fluorescent protein, wherein the phosphorylatable polypeptide is contained within the sequence of the fluorescent protein, or wherein the fluorescent protein is contained within the sequence of the phosphorylatable polypeptide. Also provided are polynucleotides encoding such chimeric phosphorylation indicators, as well as kits containing the indicators or the polynucleotides. In addition, a method of using the chimeric phosphorylation indicators to detect a kinase or phosphatase in a sample is provided.
摘要:
An imaging method comprising expressing in cells a Class I heme peroxidase, which optionally is fused with a protein of interest or a cellular localization signal peptide, and contacting the cells with a substrate of the Class I heme peroxidase to allow conversion of the substrate into a product via an oxidation reaction catalyzed by the Class I heme peroxidase, wherein the product releases a signal detectable by a microscope such as an electron microscope. Also disclosed herein are monomeric mutants of a Class I heme peroxidase and mutants of the enzyme that exhibit elevated enzymatic activity as compared to the corresponding wild-type counterpart.
摘要:
The invention provides compositions and methods of use thereof for labeling peptide and proteins in vitro or in vivo. The methods described herein employ lipoic acid ligase or mutants thereof, and lipoic acid analogs recognized by lipoic acid ligase and lipoic acid ligase mutants.
摘要:
An imaging method comprising expressing in cells a Class I heme peroxidase, which optionally is fused with a protein of interest or a cellular localization signal peptide, and contacting the cells with a substrate of the Class I heme peroxidase to allow conversion of the substrate into a product via an oxidation reaction catalyzed by the Class I heme peroxidase, wherein the product releases a signal detectable by a microscope such as an electron microscope. Also disclosed herein are monomeric mutants of a Class I heme peroxidase and mutants of the enzyme that exhibit elevated enzymatic activity as compared to the corresponding wild-type counterpart.
摘要:
An imaging method utilizing a split peroxidase is described herein. Imaging methods involve contacting a cell with a split peroxidase and a substrate thereof to allow conversion of a substrate into a product via an enzymatic reaction catalyzed by the reconstitute split peroxidase. Also disclosed herein are split peroxidases, related products and kits.
摘要:
The invention provides compositions and methods of use thereof for labeling peptide and proteins in vitro or in vivo. The methods described herein employ lipoic acid ligase or mutants thereof, and lipoic acid analogs recognized by lipoic acid ligase and lipoic acid ligase mutants.
摘要:
The invention provides compositions and methods of use thereof for labeling peptide and proteins in vitro or in vivo. The methods described herein employ biotin ligase mutants and biotin analogs recognized by such mutants.
摘要:
The present disclosure provides compositions and methods of use thereof for labeling peptide and proteins in vitro or in vivo. The methods described herein employ lipoic acid ligase or mutants thereof, and lipoic acid analogs (e.g., lipoic acid analogs comprising a resorufin moiety) recognized by lipoic acid ligase and lipoic acid ligase mutants. Also provided herein is a method of imaging protein-protein interaction via a reaction mediated by lipoic acid ligase.
摘要:
The invention provides compositions and methods of use thereof for labeling peptide and proteins in vitro or in vivo. The methods described herein employ lipoic acid ligase or mutants thereof, and lipoic acid analogs recognized by lipoic acid ligase and lipoic acid ligase mutants.
摘要:
The application discloses methods, materials, and compositions for the labeling of molecules, for example, proteins, in living cells or in subcellular compartments of living cells. In particular, the application relates to proteomic analysis methods; materials and compositions and means based on direct tagging of unknown proteins with tagging enzymes (such as biotin ligase or a peroxidase) within the vicinity of a tagging substrate (such as a tyramide) within living cells, with optional targeting to specific subcellular locations by expression of genetic constructs.