-
公开(公告)号:US20120085644A1
公开(公告)日:2012-04-12
申请号:US12900276
申请日:2010-10-07
申请人: Ronald F. Renzi , Gregory J. Sommer , Anup K. Singh , Anson V. Hatch , Mark R. Claudnic , Ying-Chih Wang , James L. Van De Vreugde
发明人: Ronald F. Renzi , Gregory J. Sommer , Anup K. Singh , Anson V. Hatch , Mark R. Claudnic , Ying-Chih Wang , James L. Van De Vreugde
IPC分类号: G01N27/447 , F16L3/00 , G01N27/453
CPC分类号: G01N27/44791 , B01L3/502715 , B01L3/56 , B01L2200/025 , B01L2200/027 , B01L2200/04 , B01L2200/0689 , B01L2300/0645 , B01L2300/0816 , B01L2300/0858 , B01L2400/0421 , B01L2400/0487 , G01N27/44743 , G01N35/1095 , G01N2035/00158 , Y10T137/6851
摘要: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
摘要翻译: 本文描述了流体分配歧管,筒和微流体系统的实施例。 流体分配歧管可以包括插入构件和歧管基座,并且当插入构件压配合到基座中时,流体分配歧管可以限定歧管内的基本上封闭的通道。 本文所述的墨盒可以允许与电多路复用板同时进行电和流体互连,并且可以使用磁吸引力将其保持就位。
-
公开(公告)号:US09579649B2
公开(公告)日:2017-02-28
申请号:US12900276
申请日:2010-10-07
申请人: Ronald F. Renzi , Gregory J. Sommer , Anup K. Singh , Anson V. Hatch , Mark R. Claudnic , Ying-Chih Wang , James L. Van de Vreugde
发明人: Ronald F. Renzi , Gregory J. Sommer , Anup K. Singh , Anson V. Hatch , Mark R. Claudnic , Ying-Chih Wang , James L. Van de Vreugde
CPC分类号: G01N27/44791 , B01L3/502715 , B01L3/56 , B01L2200/025 , B01L2200/027 , B01L2200/04 , B01L2200/0689 , B01L2300/0645 , B01L2300/0816 , B01L2300/0858 , B01L2400/0421 , B01L2400/0487 , G01N27/44743 , G01N35/1095 , G01N2035/00158 , Y10T137/6851
摘要: Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.
摘要翻译: 本文描述了流体分配歧管,筒和微流体系统的实施例。 流体分配歧管可以包括插入构件和歧管基座,并且当插入构件压配合到基座中时,流体分配歧管可以限定歧管内的基本上封闭的通道。 本文所述的墨盒可以允许与电多路复用板同时进行电和流体互连,并且可以使用磁吸引力将其保持就位。
-
公开(公告)号:US08394312B1
公开(公告)日:2013-03-12
申请号:US13237027
申请日:2011-09-20
申请人: Gregory J. Sommer , Anson V. Hatch , Ying-Chih Wang , Anup K. Singh , Ronald F. Renzi , Mark R. Claudnic
发明人: Gregory J. Sommer , Anson V. Hatch , Ying-Chih Wang , Anup K. Singh , Ronald F. Renzi , Mark R. Claudnic
IPC分类号: B81B7/00
CPC分类号: B01L3/502707 , B81B2201/058 , B81C1/00119
摘要: Methods for making a microfluidic device according to embodiments of the present invention include defining˜cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.
摘要翻译: 根据本发明的实施例的制造微流体装置的方法包括限定腔。 将聚合物前体溶液定位在空腔中并暴露于光以开始聚合过程并限定微通道。 在一些实施方案中,在聚合过程部分完成之后,进行溶剂漂洗,或引入微通道的新鲜聚合物前体。 这可以促进从微通道去除未聚合的材料,并且能够实现更小的特征尺寸。 聚合物前体溶液可以含有引发剂。 因此,聚合特征可以被具有光活性的引发剂覆盖。 引发剂可以帮助以后将聚丙烯酰胺凝胶结合到微通道表面。
-
公开(公告)号:US08047829B1
公开(公告)日:2011-11-01
申请号:US12321881
申请日:2009-01-26
申请人: Gregory J. Sommer , Anson V. Hatch , Ying-Chih Wang , Anup K. Singh , Ronald F. Renzi , Mark R. Claudnic
发明人: Gregory J. Sommer , Anson V. Hatch , Ying-Chih Wang , Anup K. Singh , Ronald F. Renzi , Mark R. Claudnic
IPC分类号: B81B7/00
CPC分类号: B01L3/502707 , B81B2201/058 , B81C1/00119
摘要: Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.
摘要翻译: 根据本发明的实施例的制造微流体装置的方法包括限定空腔。 将聚合物前体溶液定位在空腔中并暴露于光以开始聚合过程并限定微通道。 在一些实施方案中,在聚合过程部分完成之后,进行溶剂漂洗,或引入微通道的新鲜聚合物前体。 这可以促进从微通道去除未聚合的材料并且使得能够更小的特征尺寸。 聚合物前体溶液可以含有引发剂。 因此,聚合特征可以被具有光活性的引发剂覆盖。 引发剂可以帮助以后将聚丙烯酰胺凝胶结合到微通道表面。
-
5.
公开(公告)号:US08940147B1
公开(公告)日:2015-01-27
申请号:US13456135
申请日:2012-04-25
申请人: Michael S. Bartsch , Mark R. Claudnic , Hanyoup Kim , Kamlesh D. Patel , Ronald F. Renzi , James L. Van De Vreugde
发明人: Michael S. Bartsch , Mark R. Claudnic , Hanyoup Kim , Kamlesh D. Patel , Ronald F. Renzi , James L. Van De Vreugde
IPC分类号: G01N27/447
CPC分类号: G01N27/44791 , B01L3/502792 , B01L9/527 , B01L2200/027 , B01L2200/028 , B01L2200/04 , B01L2200/143 , B01L2300/0816 , B01L2300/1827 , B01L2400/0427 , G01N2035/00158
摘要: Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.
摘要翻译: 描述了可用于连接流体模块的微流体集线器和系统的实施例。 表面之间的空间可以由本文所述的夹具设置。 在一些示例中,固定装置可以基于相应基板所在的配准表面之间的距离来设置基板间距离。 描述了流体界面,包括其中流体导管(例如毛细管)延伸到夹具中到表面之间的空间的示例。 流体液滴可以被引入到本文所述的微流体轮毂和/或从这里描述的微流体轮毂移除,并且流体致动器可以用于在表面之间的空间内移动液滴。 在一些示例中,连续流模块可以与集线器集成。
-
公开(公告)号:US08828736B2
公开(公告)日:2014-09-09
申请号:US13173180
申请日:2011-06-30
CPC分类号: B01L3/502761 , B01L2200/0668 , B01L2300/0645 , B01L2300/0864 , C12M35/02 , Y10T436/2575
摘要: We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.
摘要翻译: 我们开发了一种微电极装置,其结合寡核苷酸微阵列,微流体通道和电穿孔用于细胞转染和高通量筛选应用(例如RNA干扰筛选)。 微阵列允许在微观斑点中沉积数千种不同的寡核苷酸。 微流体通道和微孔能够有效地将细胞装载到装置中并防止不同寡核苷酸斑点之间的交叉污染。 电穿孔允许通过最大限度地减少细胞死亡同时使转染效率最大化将核酸最佳地转染到细胞(特别是难转染细胞,如原代细胞)中。 本发明具有较高的生产能力和较低的成本,同时防止与常规筛选技术相比的交叉污染。 此外,该装置不需要庞大的机器人液体处理设备,并且由于它是封闭的系统,所以固有地更安全。
-
公开(公告)号:US20120004144A1
公开(公告)日:2012-01-05
申请号:US13173180
申请日:2011-06-30
IPC分类号: C40B60/12
CPC分类号: B01L3/502761 , B01L2200/0668 , B01L2300/0645 , B01L2300/0864 , C12M35/02 , Y10T436/2575
摘要: We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.
摘要翻译: 我们开发了一种微电极装置,其结合寡核苷酸微阵列,微流体通道和电穿孔用于细胞转染和高通量筛选应用(例如RNA干扰筛选)。 微阵列允许在微观斑点中沉积数千种不同的寡核苷酸。 微流体通道和微孔能够有效地将细胞装载到装置中并防止不同寡核苷酸斑点之间的交叉污染。 电穿孔允许通过最大限度地减少细胞死亡同时使转染效率最大化将核酸最佳地转染到细胞(特别是难转染细胞,如原代细胞)中。 本发明具有较高的生产能力和较低的成本,同时防止与常规筛选技术相比的交叉污染。 此外,该装置不需要庞大的机器人液体处理设备,并且由于它是封闭的系统,所以固有地更安全。
-
-
-
-
-
-