摘要:
The present invention discloses a fabrication method of a Ge-based N-type Schottky field effect transistor and relates to a filed of ultra-large-scaled integrated circuit fabrication process. The present invention forms a thin high K dielectric layer between a substrate and a metal source/drain. The thin layer on one hand may block the electron wave function of metal from inducing an MIGS interface state in the semiconductor forbidden band, on the other hand may passivate the dangling bonds at the interface of Ge. Meanwhile, since the insulating dielectric layer has a very thin thickness, and electrons can substantially pass freely, the parasitic resistances of the source and the drain are not significantly increased. The method can weaken the Fermi level pinning effect, cause the Fermi energy level close to the position of the conduction band of Ge and lower the electron barrier, thereby increasing the current switching ratio of the Ge-based Schottky transistor and improve the performance of the NMOS device.
摘要:
The present invention provides a semiconductor device and a method for fabricating the same, wherein the method comprises: providing a germanium-based semiconductor substrate having a plurality of active regions and device isolation regions between the plurality of the active regions, wherein a gate dielectric layer and a gate over the gate dielectric layer are provided on the active regions, and the active regions include source and drain extension regions and deep source and drain regions; performing a first ion implantation process with respect to the source and drain extension regions, wherein the ions implanted in the first ion implantation process include silicon or carbon; performing a second ion implantation process with respect to the source and drain extension regions; performing a third ion implantation process with respect to the deep source and drain regions; performing an annealing process with respect to the germanium-based semiconductor substrate which has been subjected to the third ion implantation process. According to the method for fabricating a semiconductor device, through the implantation of silicon impurities, appropriate stress may be introduced into the germanium channel effectively by the mismatch of lattices in the source and drain regions, so that the mobility of electrons in the channel is enhanced and the performance of the device is improved.
摘要:
The present invention provides a semiconductor device and a method for fabricating the same, wherein the method comprises: providing a germanium-based semiconductor substrate having a plurality of active regions and device isolation regions between the plurality of the active regions, wherein a gate dielectric layer and a gate over the gate dielectric layer are provided on the active regions, and the active regions include source and drain extension regions and deep source and drain regions; performing a first ion implantation process with respect to the source and drain extension regions, wherein the ions implanted in the first ion implantation process include silicon or carbon; performing a second ion implantation process with respect to the source and drain extension regions; performing a third ion implantation process with respect to the deep source and drain regions; performing an annealing process with respect to the germanium-based semiconductor substrate which has been subjected to the third ion implantation process. According to the method for fabricating a semiconductor device, through the implantation of silicon impurities, appropriate stress may be introduced into the germanium channel effectively by the mismatch of lattices in the source and drain regions, so that the mobility of electrons in the channel is enhanced and the performance of the device is improved.
摘要:
The embodiments of the present invention provide a Ge-based NMOS device structure and a method for fabricating the same. By using the method, double dielectric layers of germanium oxide (GeO2) and metal oxide are deposited between the source/drain region and the substrate. The present invention not only reduces the electron Schottky barrier height of metal/Ge contact, but also improves the current switching ratio of the Ge-based Schottky and therefore, it will improve the performance of the Ge-based Schottky NMOS transistor. In addition, the fabrication process is very easy and completely compatible with the silicon CMOS process. As compared with conventional fabrication method, the Ge-based NMOS device structure and the fabrication method in the present invention can easily and effectively improve the performance of the Ge-based Schottky NMOS transistor.
摘要:
The embodiments of the present invention provide a Ge-based NMOS device structure and a method for fabricating the same. By using the method, double dielectric layers of germanium oxide (GeO2) and metal oxide are deposited between the source/drain region and the substrate. The present invention not only reduces the electron Schottky barrier height of metal/Ge contact, but also improves the current switching ratio of the Ge-based Schottky and therefore, it will improve the performance of the Ge-based Schottky NMOS transistor. In addition, the fabrication process is very easy and completely compatible with the silicon CMOS process. As compared with conventional fabrication method, the Ge-based NMOS device structure and the fabrication method in the present invention can easily and effectively improve the performance of the Ge-based Schottky NMOS transistor.
摘要:
An embodiment of the invention provides a germanium-based NMOS device and a method for fabricating the same, which relates to fabrication process technology of an ultra-large-scale-integrated (ULSI) circuit. The germanium-based NMOS device has two dielectric layer interposed between a metal source/drain and a substrate. The bottom dielectric layer includes a dielectric material having a high pinning coefficient S such as hafnium oxide, silicon nitride, hafnium silicon oxide or the like, and the top dielectric layer includes a dielectric material having a low conduction band offset ΔEC such as titanium oxide, gallium oxide, strontium titanium oxide or the like. According to the method, Fermi level pinning effect can be alleviated, electron barrier height can be lowered, and thus performance of the germanium-based Schottky NMOS device can be improved. Compared with a conventional single dielectric layer such as aluminum oxide (Al2O3), Schottky barrier height can be lowered while low source/drain resistances can be maintained, and thus performance of the device can be significantly improved.
摘要:
The present invention discloses a strained channel field effect transistor and a method for fabricating the same. The field effect transistor comprises a substrate, a source/drain, a gate dielectric layer, and a gate, characterized in that, an “L” shaped composite isolation layer, which envelops a part of a side face of the source/drain adjacent to a channel and the bottom of the source/drain, is arranged between the source/drain and the substrate; the composite isolation layer is divided into two layers, that is, an “L” shaped insulation thin layer contacting directly with the substrate and an “L” shaped high stress layer contacting directly with the source and the drain. The field effect transistor of such a structure improves the mobility of charge carriers by introducing stress into the channel by means of the high stress layer, while fundamentally improving the device structure of the field effect transistor and improving the short channel effect suppressing ability of the device.
摘要:
The present invention discloses a strained channel field effect transistor and a method for fabricating the same. The field effect transistor comprises a substrate, a source/drain, a gate dielectric layer, and a gate, characterized in that, an “L” shaped composite isolation layer, which envelops a part of a side face of the source/drain adjacent to a channel and the bottom of the source/drain, is arranged between the source/drain and the substrate; the composite isolation layer is divided into two layers, that is, an “L” shaped insulation thin layer contacting directly with the substrate and an “L” shaped high stress layer contacting directly with the source and the drain. The field effect transistor of such a structure improves the mobility of charge carriers by introducing stress into the channel by means of the high stress layer, while fundamentally improving the device structure of the field effect transistor and improving the short channel effect suppressing ability of the device.
摘要:
The present invention relates to CMOS ultra large scale integrated circuits, and provides a method for introducing channel stress and a field effect transistor fabricated by the same. According to the present invention, a strained dielectric layer is interposed between source/drain regions and a substrate of a field effect transistor, and a strain is induced in a channel by the strained dielectric layer which directly contacts the substrate, so as to improve a carrier mobility of the channel and a performance of the device. The specific effects of the invention include: a tensile strain may be induced in the channel by using the strained dielectric layer having a tensile strain in order to increase an electron mobility of the channel; a compressive strain may be induced in the channel by using the strained dielectric layer having a compressive strain in order to increase a hole mobility of the channel. According to the invention, not only an effectiveness of the introduction of channel stress is ensued, but the device structure of the field effect transistor is also improved fundamentally, so that a capability for suppressing a short channel effect of the device is increased.
摘要:
The present invention relates to CMOS ultra large scale integrated circuits, and provides a method for introducing channel stress and a field effect transistor fabricated by the same. According to the present invention, a strained dielectric layer is interposed between source/drain regions and a substrate of a field effect transistor, and a strain is induced in a channel by the strained dielectric layer which directly contacts the substrate, so as to improve a carrier mobility of the channel and a performance of the device. The specific effects of the invention include: a tensile strain may be induced in the channel by using the strained dielectric layer having a tensile strain in order to increase an electron mobility of the channel; a compressive strain may be induced in the channel by using the strained dielectric layer having a compressive strain in order to increase a hole mobility of the channel. According to the invention, not only an effectiveness of the introduction of channel stress is ensued, but the device structure of the field effect transistor is also improved fundamentally, so that a capability for suppressing a short channel effect of the device is increased.