摘要:
A semiconductor integrated circuit device according to an embodiment of the present invention includes: a semiconductor substrate; an internal circuit formed on the semiconductor substrate, a first potential and a second potential being supplied to the internal circuit, thereby applying an operating voltage to the internal circuit; a fuse disposed above a semiconductor region of a first conductivity type, and electrically connected to the internal circuit, the semiconductor region being supplied with the second potential and being formed in the semiconductor substrate; and a protective element formed in the semiconductor region of the first conductivity type and protecting the internal circuit in response to positive and negative abnormal voltages generated in a wiring through which the fuse and the internal circuit are connected to each other.
摘要:
A semiconductor memory device includes a fuse element including a first terminal and a second terminal, which stores data based on whether or not it is electrically blown by a laser beam, a resistance element connected to the first terminal, a node in which the data is transferred, and a transistor provided between the resistance element and the node, which sets the data to the node.
摘要:
A memory may includes: word lines; bit lines; memory array blocks including memory cells, each memory array block being a unit of a data read operation or a data write operation; a row decoder configured to selectively drive the word lines; sense amplifiers configured to detect data; and an access counter provided for each memory cell block, the access counter counting the number of times of accessing the memory array blocks in order to read data or write data, and activating a refresh request signal when the number of times of access reaches a predetermined number of times, wherein during an activation period of the refresh request signal of the access counter, the row decoder periodically and sequentially activates the word lines of the memory array blocks corresponding to the access counter, and the sense amplifier performs a refresh operation of the memory cells connected to the activated word lines.
摘要:
A second-conductivity-type transistor includes a source and drain formed by a second-conductivity-type diffusion layer formed on a first-conductivity-type semiconductor layer; and a gate formed on the first-conductivity-type semiconductor layer sandwiched between the second-conductivity-type diffusion layer through an insulating film A first-conductivity-type transistor includes a source and drain formed by a first-conductivity-type diffusion layer formed on a second-conductivity-type semiconductor layer; and a gate formed on the second-conductivity-type semiconductor layer sandwiched between the first-conductivity-type diffusion layer through an insulating film. The second-conductivity-type diffusion layer for configuring the second-conductivity-type transistor is divided into a plurality of regions, each of which being separated by a device isolation region formed on the first-conductivity-type semiconductor layer. The first-conductivity-type diffusion layer for configuring the first-conductivity-type transistor is divided into a plurality of regions, each of which being separated by a device isolation region formed on the second-conductivity-type semiconductor layer.
摘要:
A second-conductivity-type transistor includes a source and drain formed by a second-conductivity-type diffusion layer formed on a first-conductivity-type semiconductor layer; and a gate formed on the first-conductivity-type semiconductor layer sandwiched between the second-conductivity-type diffusion layer through an insulating film A first-conductivity-type transistor includes a source and drain formed by a first-conductivity-type diffusion layer formed on a second-conductivity-type semiconductor layer; and a gate formed on the second-conductivity-type semiconductor layer sandwiched between the first-conductivity-type diffusion layer through an insulating film. The second-conductivity-type diffusion layer for configuring the second-conductivity-type transistor is divided into a plurality of regions, each of which being separated by a device isolation region formed on the first-conductivity-type semiconductor layer. The first-conductivity-type diffusion layer for configuring the first-conductivity-type transistor is divided into a plurality of regions, each of which being separated by a device isolation region formed on the second-conductivity-type semiconductor layer.
摘要:
A semiconductor integrated circuit device according to an embodiment of the present invention includes: a semiconductor substrate; an internal circuit formed on the semiconductor substrate, a first potential and a second potential being supplied to the internal circuit, thereby applying an operating voltage to the internal circuit; a fuse disposed above a semiconductor region of a first conductivity type, and electrically connected to the internal circuit, the semiconductor region being supplied with the second potential and being formed in the semiconductor substrate; and a protective element formed in the semiconductor region of the first conductivity type and protecting the internal circuit in response to positive and negative abnormal voltages generated in a wiring through which the fuse and the internal circuit are connected to each other.
摘要:
A semiconductor memory device includes a fuse element including a first terminal and a second terminal, which stores data based on whether or not it is electrically blown by a laser beam, a resistance element connected to the first terminal, a node in which the data is transferred, and a transistor provided between the resistance element and the node, which sets the data to the node.
摘要:
An dielectric film is formed above the semiconductor substrate. A first conductive layer is formed in the dielectric film and extending in a first direction. The first conductive layer is connected to a first select transistor. A second conductive layer formed in the dielectric film and extending in the first direction. The second conductive layer is connected to a second select transistor. A semiconductor layer is connected to both the first and second conductive layers and functioning as a channel layer of a memory transistor. A gate-insulating film is formed on the semiconductor layer. The gate-insulating film includes a charge accumulation film as a portion thereof. A third conductive layer is surrounded by the gate-insulating film.
摘要:
A semiconductor integrated circuit apparatus, comprising a data transmitter circuit, and a plurality of data receiver circuits each having a data converter circuit which restores each of bits of identification number data and transfer data from a shift register of the data transmitter circuit to 2-bit complementary data transmitted via first and second transmission lines, a reception control circuit which, when a transfer completion signal has been received via a third transmission line, compares an allocated identification number with the restored identification number data, and a shift register provided in association with the reception control circuit, wherein each reception control circuit feeds transfer data transmitted from the data transmitter circuit corresponding to the identification number data to the associated shift register in accordance with a result of comparison between the identification number data and the allocated identification number.
摘要:
This disclosure concerns a memory comprising a charge trapping film; a gate insulating film; a back gate on the charge trapping film; a front gate on the gate insulating film; and a body region provided between a drain and a source, wherein the memory includes a first storage state for storing data depending on the number of majority carriers in the body region and a second storage state for storing data depending on the amount of charges in the charge trapping film, and the memory is shifted from the first storage state to the second storage state by converting the number of majority carriers in the body region into the amount of charges in the charge trapping film or from the second storage state to the first storage state by converting the amount of charges in the charge trapping film into the number of majority carriers in the body region.