摘要:
A fuel injection controller for an internal combustion engine. The engine includes a fuel vapor treatment device having a collector for collecting fuel vapor generating in a fuel tank; a purge line that introduces purge gas into an intake passage of the engine, the purge gas being a mixture of fuel vapor released from the collector and air; and a purge valve provided in the purge line to adjust flow rate of the purge gas. The fuel injection controller corrects an amount of fuel injected from an fuel injection valve based on an amount of fuel vapor contained in the purge gas flowing into a combustion chamber of the engine. The fuel injection controller comprises an estimation section for estimating the inflow amount of the purge gas flowing into the combustion chamber based on a passed amount of purge gas that has passed through the purge valve and a compensation value for compensating transportation delay. The compensation value is set based on internal pressure of the intake passage and velocity of intake air that flows into the combustion chamber.
摘要:
A fuel injection controller for an internal combustion engine. The engine includes a fuel vapor treatment device having a collector for collecting fuel vapor generating in a fuel tank; a purge line that introduces purge gas into an intake passage of the engine, the purge gas being a mixture of fuel vapor released from the collector and air; and a purge valve provided in the purge line to adjust flow rate of the purge gas. The fuel injection controller corrects an amount of fuel injected from an fuel injection valve based on an amount of fuel vapor contained in the purge gas flowing into a combustion chamber of the engine. The fuel injection controller comprises an estimation section for estimating the inflow amount of the purge gas flowing into the combustion chamber based on a passed amount of purge gas that has passed through the purge valve and a compensation value for compensating transportation delay. The compensation value is set based on internal pressure of the intake passage and velocity of intake air that flows into the combustion chamber.
摘要:
An controller detects a change in a load generation state of an accessory device that generates a load on the internal combustion engine during operation, and the controller in turn controls a variable valve mechanism to change at least one of an operation angle and a valve lift of an intake valve of the internal combustion engine, as well as changing an amount of an intake air drawn into the internal combustion engine, in response to the detected change in the load generation state of the accessory device.
摘要:
An intake air amount control apparatus for an internal combustion engine is provided with: an opening control mechanism and a variable valve mechanism, which control an intake air amount; an intake characteristics change mechanism for controlling the intake air amount by adjusting a parameter or parameters different from those of the above two mechanisms; and an intake amount control device for performing a cooperative control of these mechanisms upon the occurrence of any normal condition. The intake air amount control apparatus is also provided with: an abnormality detection device for detecting an abnormal condition in these three mechanisms; and a fail-safe device for controlling the intake air amount of the opening control mechanism out of these three mechanisms and controlling the other two mechanism, so as to fix their control amounts to constant values.
摘要:
A signal processing circuit includes a signal selecting device operative for selecting and outputting one of plural input signals. A filter connected to the signal selecting device filters the signal selected by the signal selecting device with a changeable center frequency of a pass band of the filtering. A frequency changing device is operative for temporarily changing the center frequency when the signal selected by the signal selecting device is changed from one to another. The filter includes, for example, a switched-capacitor filter.
摘要:
A combustion condition for each of plural cylinders included in an internal combustion engine is set by the following control that is performed according to an intake air amount in each of the plural cylinders. A reference cylinder is set to a cylinder in which the intake air amount is smallest, and a fuel injection amount for the reference cylinder is set to a fuel injection amount for realizing a stoichiometric air-fuel ratio. The air-fuel ratio in each of the cylinders other than the reference cylinder is set according to the intake air amount in each of the cylinders such that the torque equal to reference torque generated in the reference cylinder is generated. When this setting is performed, air-fuel ratios that are out of a predetermined region in the vicinity of the stoichiometric air-fuel ratio (i.e., air-fuel ratios that are in an avoidance region) are excluded. With respect to a cylinder in which the torque equal to the reference torque cannot be generated only by setting the air-fuel ratio, correction of the ignition timing is further performed so as to suppress a difference between the torque generated in the cylinder and the reference torque.
摘要:
If a valve timing adjusting mechanism has a problem, an ECU determines whether or not actual valve timing VTa is larger than valve timing advanced angle limit value VTegr. Depending on the determination, the ECU selects a value for target valve operating angle VLt from safety angles including intermediate valve operating angle VLmid and maximum valve operating angle VLmax. Each of the safety angles VLmid, VLmax is a valve operating angle at which engine combustion is stabilized at the current valve timing. With the valve operating angle fixed at the safety angle VLmid or VLmax, a throttle valve controls intake air amount. This prevents the engine combustion from becoming unstable, thus enabling the engine to be operated in an engine safety mode.
摘要:
To ensure both responsiveness and stability of a knock determination in which a knock sensor signal is compared with a knock determining reference computed from a background value, a difference between the knock sensor signal and the background value is determined through averaging by the use of the averaging coefficient. Based on the difference, the averaging coefficient n is varied so that the more latest sensor output signals are used in the background value determination as the difference becomes larger.
摘要:
The knock control apparatus for an internal combustion engine comprises a knock detecting unit, a knock intensity value detecting unit for detecting a knock intensity value from a knock detecting output signal of the knock detecting unit within a predetermined crank angle range, a unit for calculating a mean value of the knock intensity value, a unit for calculating a mean deviation between the knock intensity value and the mean value, a cumulative percentage point updating unit for updating a cumulative percentage point of the distribution of the knock intensity value, a first updated quantity calculating unit for calculating a first updated quantity based on the knock intensity value and the cumulative percentage point, a second updated quantity setting unit for setting a second updated quantity for updating the cumulative percentage point updating unit based on the magnitude relationship between the first updated quantity and the mean deviation, a knock decision level calculating unit for calculating a knock decision level based on an updation result of the cumulative percentage point updating unit, and a knock decision and control unit for deciding presence or absence of knocking based on a comparison between the knock intensity value and the knock decision level and controlling knock control factors based on a result of the decision, whereby both conditions of the response at the time of a transient operation and the stability during a normal operation, respectively, of the engine are satisfied so that an optimum knock decision level may always be obtained.
摘要:
An engine has a variable valve actuation mechanism that varies lift characteristics of an intake valve. An idle speed control apparatus has a control section for controlling an intake air amount of the engine in an idle state for adjusting an actual engine speed to a target engine speed. The control section sets a control amount related to control of the intake air amount in correspondence with the lift characteristics, which are varied by the variable valve actuation mechanism. Accordingly, the engine speed in the idle state is effectively controlled in correspondence with changes of the lift characteristics.