摘要:
A resistance variable memory apparatus (100) of the present invention includes a current suppressing element (116) which is connected in series with each resistance variable layer (114) and whose threshold voltage is VF, and is configured to apply a first voltage V1 to a first wire (WL) associated with a selected nonvolatile memory element, apply a second voltage V2 to a second wire (BL) associated with the selected nonvolatile memory element, apply a third voltage V3 to a first wire (WL) which is not associated with the selected nonvolatile memory element and apply a fourth voltage V4 to a second wire (BL) which is not associated with the selected memory element when writing data or reading data, wherein V2≦V3
摘要:
A resistance variable memory apparatus (100) of the present invention includes a current suppressing element (116) which is connected in series with each resistance variable layer (114) and whose threshold voltage is VF, and is configured to apply a first voltage V1 to a first wire (WL) associated with a selected nonvolatile memory element, apply a second voltage V2 to a second wire (BL) associated with the selected nonvolatile memory element, apply a third voltage V3 to a first wire (WL) which is not associated with the selected nonvolatile memory element and apply a fourth voltage V4 to a second wire (BL) which is not associated with the selected memory element when writing data or reading data, wherein V2≦V3
摘要:
A resistance variable memory apparatus (100) of the present invention includes a current suppressing element (116) which is connected in series with each resistance variable layer (114) and whose threshold voltage is VF, and is configured to apply a first voltage V1 to a first wire (WL) associated with a selected nonvolatile memory element, apply a second voltage V2 to a second wire (BL) associated with the selected nonvolatile memory element, apply a third voltage V3 to a first wire (WL) which is not associated with the selected nonvolatile memory element and apply a fourth voltage V4 to a second wire (BL) which is not associated with the selected memory element when writing data or reading data, wherein V2≦V3
摘要:
Memory cells (MC) are formed at intersections of bit lines (BL) extending in the X direction and word lines (WL) extending in the Y direction. A plurality of basic array planes sharing the word lines (WL), each formed for a group of bit lines (BL) aligned in the Z direction, are arranged side by side in the Y direction. In each basic array plane, bit lines in even layers and bit lines in odd layers are individually connected in common. Each of selection switch elements (101 to 104) controls switching of electrical connection/non-connection between the common-connected even layer bit line and a global bit line (GBL), and each of selection switch elements (111 to 114) control switching of connection/non-connection between the common-connected odd layer bit line and the global bit line (GBL).
摘要:
Memory cells (MC) are formed at intersections of bit lines (BL) extending in the X direction and word lines (WL) extending in the Y direction. A plurality of basic array planes sharing the word lines (WL), each formed for a group of bit lines (BL) aligned in the Z direction, are arranged side by side in the Y direction. In each basic array plane, bit lines in even layers and bit lines in odd layers are individually connected in common. Each of selection switch elements (101 to 104) controls switching of electrical connection/non-connection between the common-connected even layer bit line and a global bit line (GBL), and each of selection switch elements (111 to 114) control switching of connection/non-connection between the common-connected odd layer bit line and the global bit line (GBL).
摘要:
A variable resistance nonvolatile memory device including memory cells provided at cross-points of first signal lines and second signal lines, each memory cell including a variable resistance element and a current steering element connected to the variable resistance element in series, the variable resistance nonvolatile memory device including a write circuit, a row selection circuit, and a column selection circuit, wherein the write circuit: sequentially selects blocks in an order starting from a block farthest from at least one of the row selection circuit and the column selection circuit and finishing with a block closest to the at least one of the row selection circuit and the column selection circuit; and performs, for each of the selected blocks, initial breakdown on each memory cell included in the selected block.
摘要:
A cross point variable resistance nonvolatile memory device including: a cross point memory cell array having memory cells each of which is placed at a different one of cross points of bit lines and word lines; a word line decoder circuit that selects at least one of the memory cells from the memory cell array; a read circuit that reads data from the selected memory cell; an unselected word line current source that supplies a first constant current; and a control circuit that controls the reading of the data from the selected memory cell, wherein the control circuit controls the word line decoder circuit, the read circuit, and the unselected word line current source so that when the read circuit reads data, the first constant current is supplied to an unselected word line.
摘要:
To provide a variable resistance element writing method that, even when a variable resistance element has a possibility of becoming a half LR state, can ensure a maximum resistance change window by correcting the variable resistance element to a normal low resistance state. In a method of writing data to a variable resistance element (10a) that reversibly changes between a high resistance state and a low resistance state according to a polarity of an applied voltage, as a voltage applied to an upper electrode (11) with respect to a lower electrode (14t): a positive voltage is applied in a high resistance writing step (405) to set the variable resistance element (10a) to a high resistance state (401); a negative voltage is applied in a low resistance writing step (406, 408) to set the variable resistance element (10a) to a low resistance state (403, 402); and a positive voltage is applied in a low resistance stabilization writing step (404) after the negative voltage is applied in the low resistance writing step (408), thereby setting the variable resistance element (10a) through the low resistance state to the high resistance state (401).
摘要:
A nonvolatile resistance variable memory device (100) includes memory cells (M11, M12, . . . ) in each of which a variable resistance element (R11, R12, . . . ) including a variable resistance layer placed between and in contact with a first electrode and a second electrode, and a current steering element (D11, D12, . . . ) including a current steering layer placed between and in contact with a third electrode and a fourth electrode, are connected in series, and the device is driven by a first LR drive circuit (105a1) via a current limit circuit (105b) to decrease resistance of the variable resistance element while the device is driven by a second HR drive circuit (105a2) to increase resistance of the variable resistance element, thus using the current limit circuit (105b) to make a current for decreasing resistance of the variable resistance element lower than a current for increasing resistance of the variable resistance element.
摘要:
A cross point nonvolatile memory device capable of suppressing sneak-current-caused reduction in sensitivity of detection of a resistance value of a memory element is provided. The device includes perpendicular bit and word lines; a cross-point cell array including memory cells each having a resistance value reversibly changing between at least two resistance states according to electrical signals, arranged on cross-points of the word and bit lines; an offset detection cell array including an offset detection cell having a resistance higher than that of the memory cell in a high resistance state, the word lines being shared by the offset detection cell array; a read circuit (a sense amplifier) that determines a resistance state of a selected memory cell based on a current through the selected bit line; and a current source which supplies current to the offset detection cell array in a read operation period.