摘要:
A fine pattern is formed on a surface of a processing object without using photoresist. A wet etching for the processing object in an area to which ultraviolet light is applied is performed by bringing a solution in which nitrous oxide (N2O) is dissolved into contact with the processing object and applying the ultraviolet light to the solution in a vicinity of an area to the processing object other than portions shielded with a mask whereupon a light shielding pattern is formed.
摘要:
A substrate cleaning device includes a rotating table that rotatably holds a silicon substrate. A light irradiation device is capable of irradiating at least a portion of a surface of the held silicon substrate with light. A nozzle is capable of selectively supplying at least N2O water and a hydrofluoric acid solution onto the substrate. A control unit controls the supply of the light irradiation device and the nozzle and enables light irradiation by the light irradiation device when the N2O water is supplied onto the silicon substrate.
摘要翻译:一种基板清洁装置,包括可旋转地保持硅基板的旋转台。 光照射装置能够用光照射被保持的硅衬底的表面的至少一部分。 喷嘴能够选择性地将至少N 2 O 2 O水和氢氟酸溶液供应到基底上。 控制单元控制光照射装置和喷嘴的供给,并且当N 2 O 2水被供应到硅基板上时,能够通过光照射装置进行光照射。
摘要:
A substrate processing apparatus includes a first processing chamber and a second processing chamber, a first substrate holding unit that holds a substrate in the first processing chamber, a chemical solution supply unit that supplies a chemical solution containing an etching component and a thickening agent to the substrate held by the first substrate holding unit, a substrate transfer unit that transfers the substrate from the first processing chamber to the second processing chamber in a state in which the chemical solution is held on the substrate, and a second substrate holding unit that holds a plurality of substrates on each of which the chemical solution is held in the second processing chamber.
摘要:
A method of cleaning for removing metal compounds attached to a surface of a substrate, wherein the cleaning is conducted by supplying a supercritical fluid of carbon dioxide comprising at least one of triallylamine and tris(3-aminopropyl)amine to the surface of the substrate and a process for producing a semiconductor device using the method of cleaning are provided. In accordance with the method of cleaning and the method for producing a semiconductor device using the method, etching residues or polishing residues containing metal compounds are efficiently removed selectively from the electroconductive material forming the electroconductive layer. When the electroconductive layer is a wiring, an increase in resistance due to residual metal compounds can be suppressed, and an increase in the leak current due to diffusion of the metal from the metal compounds to the insulating film can be prevented. Therefore, reliability on the wiring is improved, and the yield of the semiconductor device can be increased.
摘要:
A structural body comprising a substrate and a structural layer formed on the substrate through an air gap in which the structural layer functions as a micro movable element is produced by a process comprising a film-deposition step of successively forming a sacrificial layer made of a silicon oxide film and the structural layer on the substrate, an air gap-forming step of removing the sacrificial layer by etching with a treating fluid to form the air gap between the substrate and the structural layer, and a cleaning step. By using a supercritical carbon dioxide fluid containing a fluorine compound, a water-soluble organic solvent and water as the treating fluid, the sacrificial layer is removed in a short period of time with a small amount of the treating fluid without any damage to the structural body.
摘要:
A method of cleaning for removing metal compounds attached to a surface of a substrate, wherein the cleaning is conducted by supplying a supercritical fluid of carbon dioxide comprising at least one of triallylamine and tris(3-aminopropyl)amine to the surface of the substrate and a process for producing a semiconductor device using the method of cleaning are provided. In accordance with the method of cleaning and the method for producing a semiconductor device using the method, etching residues or polishing residues containing metal compounds are efficiently removed selectively from the electroconductive material forming the electroconductive layer. When the electroconductive layer is a wiring, an increase in resistance due to residual metal compounds can be suppressed, and an increase in the leak current due to diffusion of the metal from the metal compounds to the insulating film can be prevented. Therefore, reliability on the wiring is improved, and the yield of the semiconductor device can be increased.
摘要:
An anisotropic etching agent composition for manufacturing of micro-structures of silicon comprising an alkali compound and hydroxylamines; an anisotropic etching method with the use of the etching agent composition. The alkali compound is preferably tetramethylammonium hydroxide, and the hydroxylamines is preferably at least one kind selected from the group consisting of hydroxylamine, hydroxylamine sulfate, hydroxylamine chloride, hydroxylamine oxalate, dimethyl hydroxylamine hydrochloride and hydroxylamine phosphate. An anisotropic etching property whose etching rate is different in crystal face orientation especially relating with etching technology with the use of manufacturing of micro-structures of silicon used as Micro Electro Mechanical Systems (MEMS) parts, semiconductor materials, etc is provided.
摘要:
A structural body comprising a substrate and a structural layer formed on the substrate through an air gap in which the structural layer functions as a micro movable element is produced by a process comprising a film-deposition step of successively forming a sacrificial layer made of a silicon oxide film and the structural layer on the substrate, an air gap-forming step of removing the sacrificial layer by etching with a treating fluid to form the air gap between the substrate and the structural layer, and a cleaning step. By using a supercritical carbon dioxide fluid containing a fluorine compound, a water-soluble organic solvent and water as the treating fluid, the sacrificial layer is removed in a short period of time with a small amount of the treating fluid without any damage to the structural body.