Abstract:
In an embodiment, an energy-absorbing device can comprise: a polymer reinforcement structure, wherein the polymer reinforcement structure comprises a polymer matrix and chopped fibers; and a shell comprising 2 walls extending from a back and forming a shell channel, wherein the shell comprises continuous fibers and a resin matrix; wherein the polymer reinforcement structure is located in the shell channel.
Abstract:
A fiber-reinforced thermoplastic composition includes a polypropylene polymer component including a low flow grade polypropylene and a high flow grade polypropylene, and a fiber reinforcement component. The fiber-reinforced thermoplastic composition is capable of being vacuum formed. In another aspect a thermoplastic composition includes a homopolymer component including polypropylene, a co-polymer component, an impact modifier, and one or more of a flame retardant component and a fiber reinforcement component. The thermoplastic composition is capable of being vacuum formed. The fiber-reinforced thermoplastic composition may be formed into an article such as an enclosure for an electrical component, and it may be chemically resistant to a medical grade cleaner.
Abstract:
A method of making an article includes: heating a plaque formed from a thermoplastic composition; and vacuum forming the heated plaque to form the article. The thermoplastic composition includes a polypropylene polymer component and a fiber reinforcement component. The heating is implemented using one or more heaters having a maximum temperature output of between 1500-3000° C. and maximum intensity between 0.80 μm and 2 μm. The article may include a surgical tray having a bottom surface having side walls disposed around a periphery thereof and extending from the bottom surface.
Abstract:
A mold apparatus comprising: a core portion comprising a core surface, a first induction coil, and an inner core, and wherein the core portion has a core portion mass; a cavity portion comprising a second induction coil and a cavity surface, and wherein the cavity portion has a cavity portion mass; wherein the inner core comprises a non-magnetic material, the core surface comprises a magnetic material, and a density of the non-magnetic material is less than a density of the magnetic material; and wherein the core portion mass and the cavity portion mass differ by less than or equal to than 5%.
Abstract:
A surgical article formed from a fiber-reinforced thermoplastic composition includes a polypropylene polymer component and a fiber reinforcement component. The surgical article is formed using a vacuum forming process. The surgical article may include a surgical tray including a bottom surface having side walls disposed around a periphery thereof and extending from the bottom surface. The vacuum forming may include a heater profile configured to heat a surface area at a perimeter of a plaque such that a plaque thinning at the bottom surface is minimized and radius stretch through the side walls is minimized, thereby retaining maximum wall thickness.
Abstract:
In an embodiment, an A-B-A structure, can comprise: a core layer comprising a first thermoplastic material having a first density (Y), wherein the core layer has a core thickness and wherein the core layer comprise at least one of (i) a through plane thermal conductivity of greater than equal to 0.1 W/m K, and (ii) a core layer density (X) that is X≧0.8Y; a first outer layer comprising a second thermoplastic material located on a first side of the core layer; and a second outer layer comprising the second thermoplastic material located on a second side of the core layer opposite the first side; wherein the core thickness is 30% to 75% of a total thickness of the A-B-A structure.
Abstract:
A mold apparatus comprising: a core portion comprising a core surface, a first induction coil, and an inner core, and wherein the core portion has a core portion mass; a cavity portion comprising a second induction coil and a cavity surface, and wherein the cavity portion has a cavity portion mass; wherein the inner core comprises a non-magnetic material, the core surface comprises a magnetic material, and a density of the non-magnetic material is less than a density of the magnetic material; and wherein the core portion mass and the cavity portion mass differ by less than or equal to than 5%.
Abstract:
A composition for the manufacture of a porous, compressible article, the composition comprising a combination of: a plurality of reinforcing fibers; a plurality of thermoplastic fibers; optionally a plurality of polymeric binder fibers; and continuous spaced carrier fibers; wherein the polymeric binder fibers have a melting point lower than the thermoplastic fibers; methods for forming the porous, compressible article; and articles containing the porous, compressible article. An article comprising a thermoformed composite is also disclosed, wherein the composite is not supported by a scrim layer and the composite exhibits improved conformation to fine mold details to which the scrim layer could not accurately conform.
Abstract:
A fiber-reinforced thermoplastic composition includes a polypropylene polymer component including a low flow grade polypropylene and a high flow grade polypropylene, and a fiber reinforcement component. The fiber-reinforced thermoplastic composition is capable of being vacuum formed. In another aspect a thermoplastic composition includes a homopolymer component including polypropylene, a co-polymer component, an impact modifier, and one or more of a flame retardant component and a fiber reinforcement component. The thermoplastic composition is capable of being vacuum formed. The fiber-reinforced thermoplastic composition may be formed into an article such as an enclosure for an electrical component, and it may be chemically resistant to a medical grade cleaner.
Abstract:
In an embodiment, an A-B-A structure, can comprise: a core layer comprising a first thermoplastic material having a first density (Y), wherein the core layer has a core thickness and wherein the core layer comprise at least one of (i) a through plane thermal conductivity of greater than equal to 0.1 W/m K, and (ii) a core layer density (X) that is X≥0.8Y; a first outer layer comprising a second thermoplastic material located on a first side of the core layer; and a second outer layer comprising the second thermoplastic material located on a second side of the core layer opposite the first side; wherein the core thickness is 30% to 75% of a total thickness of the A-B-A structure.