Abstract:
A process of catalytically dehydrogenating an alkane to an alkene, using Cr2O3 as a catalyst, where the catalyst is oxidized to CrO3 during the dehydrogenation, and is regenerated by using CO as a reducing gas. In regenerating the catalyst with CO, CO2 is produced, which may be fed to a dehydrogenation reactor with the alkane and reacted with H2 produced by the dehydrogenation, to form CO and H2O by the reverse water-gas shift reaction.
Abstract:
A fixed bed reactor for cyclic, catalytic dehydrogenation of hydrocarbons, such as alkanes and a reactor-internal device for improving distribution of hydrocarbon feed into the fixed catalyst bed of the reactor. The device comprises a vertical deflector plate with multiple horizontal slits and a frustum cone with multiple perforations on the lateral surface, connected to the bottom end of the plate. The reactor includes a main horizontal reaction vessel containing a fixed catalyst bed and a cactus-shaped inlet assembly sub-divided into three inlets at the upper half portion to supply fluid streams, including hydrocarbon feed, to the catalyst bed. The distributor device is positioned inside a main central vertical arm of the inlet assembly form by the convergence of the three inlets. Various embodiments of the distributor device where the slit thicknesses, distance between slits, perforation diameter, distance between perforations are varied, are also provided.
Abstract:
A process of catalytically dehydrogenating an alkane to an alkene, using Cr2O3 as a catalyst, where the catalyst is reduced concurrently with the dehydrogenation by using CO as a reducing gas. In reducing the catalyst with CO, CO2 is produced, which may be reacted with H2 produced by the dehydrogenation, to form CO and H2O by the reverse water-gas shift reaction. A Cu O heat-releasing material may be included with the catalyst in the reactor. The CO reducing gas reduces CuO to form Cu and CO2, releasing heat. The CO2 produced by reducing the Cu O may also be reacted with H2 produced by the dehydrogenation, to form CO and H2O by the reverse water-gas shift reaction.
Abstract:
An on-line gas chromatography system for a fixed-bed continuous flow reactor and a method for on-line gas analysis of a catalytic reaction using the gas chromatography system. A reactor flow loop, a gas chromatogram, and a hydrostatic regulator are present in the gas chromatography system, wherein the reactor flow loop contains a fixed-bed reactor, a purge gas source, a feed gas source, and a by-pass line for reaction calibration.
Abstract:
A process of catalytically dehydrogenating an alkane to an alkene, using Cr2O3 as a catalyst, where the catalyst is reduced concurrently with the dehydrogenation by using CO as a reducing gas. In reducing the catalyst with CO, CO2 is produced, which may be reacted with H2 produced by the dehydrogenation, to form CO and H2O by the reverse water-gas shift reaction. A Cu O heat-releasing material may be included with the catalyst in the reactor. The CO reducing gas reduces CuO to form Cu and CO2, releasing heat. The CO2 produced by reducing the Cu O may also be reacted with H2 produced by the dehydrogenation, to form CO and H2O by the reverse water-gas shift reaction.
Abstract:
A process of catalytically dehydrogenating an alkane to an alkene, using Cr2O3 as a catalyst, where the catalyst is oxidized to CrO3 during the dehydrogenation, and is regenerated by using CO as a reducing gas. In regenerating the catalyst with CO, CO2 is produced, which may be fed to a dehydrogenation reactor with the alkane and reacted with H2 produced by the dehydrogenation, to form CO and H2O by the reverse water-gas shift reaction.
Abstract:
A fixed bed reactor for cyclic, catalytic de-hydrogenation of hydrocarbons, such as alkanes and a reactor-internal device for improving distribution of hydrocarbon feed into the fixed catalyst bed of the reactor. The device comprises a vertical deflector plate with multiple horizontal slits and a frustum cone with multiple perforations on the lateral surface, connected to the bottom end of the plate. The reactor includes a main horizontal reaction vessel containing a fixed catalyst bed and a cactus-shaped inlet assembly sub-divided into three inlets at the upper half portion to supply fluid streams, including hydrocarbon feed, to the catalyst bed. The distributor device is positioned inside a main central vertical arm of the inlet assembly form by the convergene of the three inlets. Various embodiments of the distributor device where the slit thicknesses, distance between slits, perforation diameter, distance between perforations are varied, are also provided.
Abstract:
A catalytic reaction analysis dual reactor system and a method for measuring the catalytic activity of a catalyst by correcting for non-catalytic effects with the catalytic reaction analysis dual reactor system. The dual reactor system contains a first reactor comprising a first catalyst on a first catalyst support, and a second reactor comprising a second catalyst support, wherein the particle size and amount of the first catalyst and the second catalyst support are substantially the same, and the effect of the catalyst is isolated by correcting the result obtained from the first reactor containing the catalyst with the result obtained from the second reactor containing the catalyst support.
Abstract:
The present disclosure addresses the deficiencies described above by providing systems and methods for enhancing the efficiency and yield of alkene production. The methods and systems provide for the use of activated CO2 in a dehydrogenation reactor along with an alkane stream. Through the use of the methods and systems of the invention, catalyst deactivation by coke deposition is reduced and the selectivity and efficiency of the dehydrogenation reaction is improved.